论文标题

人类流动性预测因果关系和空间限制的多任务网络

Human Mobility Prediction with Causal and Spatial-constrained Multi-task Network

论文作者

Huang, Zongyuan, Xu, Shengyuan, Wang, Menghan, Wu, Hansi, Xu, Yanyan, Jin, Yaohui

论文摘要

对人类流动性进行建模有助于了解人们如何访问资源并在城市中彼此进行身体接触,从而有助于各种应用程序,例如城市规划,流行病控制和基于位置的广告。下一个位置预测是单个人类移动性建模中的一项决定性任务,通常被视为序列建模,使用Markov或基于RNN的方法解决。但是,现有模型很少关注单个旅行决策的逻辑以及人口集体行为的可重复性。为此,我们提出了一个因果关系和空间约束的长期和短期学习者(CSLSL),以进行下一个位置预测。 CSLSL利用基于多任务学习的因果结构来明确对“ \ textit {$ \ rightarrow $ whit $ \ rightarrow $ where}”,a.k.a.”,a.k.a.” \ textit {time $ \ rightArow $ $ $ $ $ \ rightArlow $ \ rightarrow $ stopation}”决策logic。接下来,我们建议将空间约束损失函数作为辅助任务,以确保旅行者目的地的预测和实际空间分布之间的一致性。此外,CSLSL采用了名为Long and Short-Short Capturer(LSC)的模块,以学习不同时间跨度的过渡规律。在三个现实世界数据集上进行的广泛实验表明,CSLSL对基准的表现有望改善,并确认了引入因果关系和一致性约束的有效性。该实现可在https://github.com/urbanmobility/cslsl上获得。

Modeling human mobility helps to understand how people are accessing resources and physically contacting with each other in cities, and thus contributes to various applications such as urban planning, epidemic control, and location-based advertisement. Next location prediction is one decisive task in individual human mobility modeling and is usually viewed as sequence modeling, solved with Markov or RNN-based methods. However, the existing models paid little attention to the logic of individual travel decisions and the reproducibility of the collective behavior of population. To this end, we propose a Causal and Spatial-constrained Long and Short-term Learner (CSLSL) for next location prediction. CSLSL utilizes a causal structure based on multi-task learning to explicitly model the "\textit{when$\rightarrow$what$\rightarrow$where}", a.k.a. "\textit{time$\rightarrow$activity$\rightarrow$location}" decision logic. We next propose a spatial-constrained loss function as an auxiliary task, to ensure the consistency between the predicted and actual spatial distribution of travelers' destinations. Moreover, CSLSL adopts modules named Long and Short-term Capturer (LSC) to learn the transition regularities across different time spans. Extensive experiments on three real-world datasets show promising performance improvements of CSLSL over baselines and confirm the effectiveness of introducing the causality and consistency constraints. The implementation is available at https://github.com/urbanmobility/CSLSL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源