论文标题
DRNET:用于远程生理测量的分解和重建网络
DRNet: Decomposition and Reconstruction Network for Remote Physiological Measurement
论文作者
论文摘要
基于远程的光摄影学(RPPG)的生理测量值在情感计算,非接触式健康监测,远程医疗监测等方面具有良好的应用值,这已经变得越来越重要,尤其是在Covid-19-19-19大流行期间。现有方法通常分为两组。第一个重点是从面部视频中挖掘微妙的血量脉冲(BVP)信号,但很少明确地模拟主导面部视频内容的声音。它们容易受到噪音的影响,在看不见的情况下可能会遭受概括能力差。第二个重点是直接建模嘈杂的数据,由于缺乏这些严重的随机噪声的规律性,导致了次优的性能。在本文中,我们提出了一个分解和重建网络(DRNET),重点是生理特征而不是嘈杂数据的建模。提出了新的周期损失来限制生理信息的周期性。此外,提出了插件空间注意块(SAB),以增强功能以及空间位置信息。此外,提出了有效的斑块种植(PC)增强策略,以合成具有不同噪声和特征的增强样品。在不同的公共数据集以及跨数据库测试上进行了广泛的实验证明了我们方法的有效性。
Remote photoplethysmography (rPPG) based physiological measurement has great application values in affective computing, non-contact health monitoring, telehealth monitoring, etc, which has become increasingly important especially during the COVID-19 pandemic. Existing methods are generally divided into two groups. The first focuses on mining the subtle blood volume pulse (BVP) signals from face videos, but seldom explicitly models the noises that dominate face video content. They are susceptible to the noises and may suffer from poor generalization ability in unseen scenarios. The second focuses on modeling noisy data directly, resulting in suboptimal performance due to the lack of regularity of these severe random noises. In this paper, we propose a Decomposition and Reconstruction Network (DRNet) focusing on the modeling of physiological features rather than noisy data. A novel cycle loss is proposed to constrain the periodicity of physiological information. Besides, a plug-and-play Spatial Attention Block (SAB) is proposed to enhance features along with the spatial location information. Furthermore, an efficient Patch Cropping (PC) augmentation strategy is proposed to synthesize augmented samples with different noise and features. Extensive experiments on different public datasets as well as the cross-database testing demonstrate the effectiveness of our approach.