论文标题

探索企业服务器数据以评估建模系统行为的易用性

Exploration of Enterprise Server Data to Assess Ease of Modeling System Behavior

论文作者

Altinisik, Enes, Sencar, Husrev Taha, Nabeel, Mohamed, Khalil, Issa, Yu, Ting

论文摘要

由于它们包含的大量敏感和有价值的数据,企业网络是网络攻击的主要目标之一。检测企业环境中攻击的常见方法依赖于对用户和系统的行为进行建模以识别意外偏差。这种方法的可行性至关重要地取决于如何从良性和平凡的系统活动中隔离与攻击相关的事件。尽管重点关注最终用户系统,但对企业运行关键服务的服务器的背景行为的研究较少。为了指导针对服务器量身定制的检测方法的设计,在这项工作中,我们检查了从46个企业中获得的46个服务器的系统事件记录,这些企业已在十周的时间内获得。我们分析事件日志数据中出处关系的稀有特征和相似性。我们的发现表明,一般而言,服务器活动随着时间的推移而变化很大,并且在不同类型的服务器中都不同。但是,仔细考虑历史事件的分析窗口和服务器的服务水平分组,将稀有度测量提高了24.5%。此外,利用更好的上下文表示,可以改善出处关系的相似性。我们发现的一个重要含义是,考虑到具有非代表性特征的实验设置,开发的检测技术在实践中的性能可能很差。

Enterprise networks are one of the major targets for cyber attacks due to the vast amount of sensitive and valuable data they contain. A common approach to detecting attacks in the enterprise environment relies on modeling the behavior of users and systems to identify unexpected deviations. The feasibility of this approach crucially depends on how well attack-related events can be isolated from benign and mundane system activities. Despite the significant focus on end-user systems, the background behavior of servers running critical services for the enterprise is less studied. To guide the design of detection methods tailored for servers, in this work, we examine system event records from 46 servers in a large enterprise obtained over a duration of ten weeks. We analyze the rareness characteristics and the similarity of the provenance relations in the event log data. Our findings show that server activity, in general, is highly variant over time and dissimilar across different types of servers. However, careful consideration of profiling window of historical events and service level grouping of servers improve rareness measurements by 24.5%. Further, utilizing better contextual representations, the similarity in provenance relationships could be improved. An important implication of our findings is that detection techniques developed considering experimental setups with non-representative characteristics may perform poorly in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源