论文标题

网络物理系统中基于机器学习的异常检测的安全性

Security of Machine Learning-Based Anomaly Detection in Cyber Physical Systems

论文作者

Jadidi, Zahra, Pal, Shantanu, K, Nithesh Nayak, Selvakkumar, Arawinkumaar, Chang, Chih-Chia, Beheshti, Maedeh, Jolfaei, Alireza

论文摘要

在这项研究中,我们专注于对抗性攻击对CPS网络中基于深度学习的异常检测的影响,并通过使用对抗性样本对攻击进行缓解方法,以针对攻击进行缓解方法。我们使用BOT-IOT和MODBUS IOT数据集来表示两个CPS网络。我们训练深度学习模型,并使用这些数据集生成对抗样本。这些数据集是从物联网和工业物联网(IIT)网络中捕获的。他们都提供正常和攻击活动的样本。经过这些数据集训练的深度学习模型在检测攻击方面表现出很高的准确性。采用人工神经网络(ANN),其中一个输入层,四个中间层和一个输出层。输出层具有两个表示二进制分类结果的节点。为了生成实验的对抗样本,我们使用了来自Cleverhans库中的称为“ Fast_gradient_method”的函数。实验结果证明了FGSM对抗样品对预测准确性的影响,并证明了使用重新训练模型来防御对抗性攻击的有效性。

In this study, we focus on the impact of adversarial attacks on deep learning-based anomaly detection in CPS networks and implement a mitigation approach against the attack by retraining models using adversarial samples. We use the Bot-IoT and Modbus IoT datasets to represent the two CPS networks. We train deep learning models and generate adversarial samples using these datasets. These datasets are captured from IoT and Industrial IoT (IIoT) networks. They both provide samples of normal and attack activities. The deep learning model trained with these datasets showed high accuracy in detecting attacks. An Artificial Neural Network (ANN) is adopted with one input layer, four intermediate layers, and one output layer. The output layer has two nodes representing the binary classification results. To generate adversarial samples for the experiment, we used a function called the `fast_gradient_method' from the Cleverhans library. The experimental result demonstrates the influence of FGSM adversarial samples on the accuracy of the predictions and proves the effectiveness of using the retrained model to defend against adversarial attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源