论文标题

加权当地的耐寒空间,带有可变指数

Weighted local Hardy spaces with variable exponents

论文作者

Izuki, Mitsuo, Nogayama, Toru, Noi, Takahiro, Sawano, Yoshihiro

论文摘要

本文定义了具有可变指数的本地加权耐寒空间。当地的Hardy空间允许原子分解,这是本文的主要主题之一。结果是,对于具有指数衰减指数的Lebesgue空间中的功能,获得了原子分解。作为一种应用,我们获得了单数积分运算符的界限,Littlewood-Paley表征和小波分解。

This paper defines local weighted Hardy spaces with variable exponent. Local Hardy spaces permit atomic decomposition, which is one of the main themes in this paper. A consequence is that the atomic decomposition is obtained for the functions in the Lebesgue spaces with exponentially decaying exponent. As an application, we obtain the boundedness of singular integral operators, the Littlewood--Paley characterization and wavelet decomposition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源