论文标题

通过3D MRI的域翻译合成宠物

Synthetic PET via Domain Translation of 3D MRI

论文作者

Rajagopal, Abhejit, Natsuaki, Yutaka, Wangerin, Kristen, Hamdi, Mahdjoub, An, Hongyu, Sunderland, John J., Laforest, Richard, Kinahan, Paul E., Larson, Peder E. Z., Hope, Thomas A.

论文摘要

从历史上看,患者数据集已被用于开发和验证PET/MRI和PET/CT的各种重建算法。为了使这种算法开发,无需获得数百个患者检查,在本文中,我们展示了一种深度学习技术,可以从丰富的全身MRI中产生合成但逼真的全身宠物纹状体。具体来说,我们使用56 $^{18} $ F-FDG-PET/MRI考试的数据集来训练3D残差UNET,以预测全身T1加权MRI的生理PET摄取。在训练中,我们实施了平衡的损失函数,以在大型动态范围内产生逼真的吸收,并沿着层析成像线的响应线对模仿宠物的获取产生计算的损失。预测的PET图像被预测会产生合成宠物飞行时间(TOF)正式图,可与供应商提供的PET重建算法一起使用,包括使用基于CT的衰减校正(CTAC)和基于MR的衰减校正(MRAC)。由此产生的合成数据概括了生理学$^{18} $ f-fdg摄取,例如高吸收位于大脑和膀胱,以及肝脏,肾脏,心脏和肌肉的吸收。为了模拟摄取高度的异常,我们还插入了合成病变。我们证明,该合成PET数据可以与实际PET数据互换使用,以比较基于CT和MR的衰减校正方法的PET量化任务,与使用真实数据相比,在平均值中获得了$ \ leq 7.6 \%$误差。这些结果共同表明,所提出的合成PET数据管道可以合理地用于开发,评估和验证PET/MRI重建方法。

Historically, patient datasets have been used to develop and validate various reconstruction algorithms for PET/MRI and PET/CT. To enable such algorithm development, without the need for acquiring hundreds of patient exams, in this paper we demonstrate a deep learning technique to generate synthetic but realistic whole-body PET sinograms from abundantly-available whole-body MRI. Specifically, we use a dataset of 56 $^{18}$F-FDG-PET/MRI exams to train a 3D residual UNet to predict physiologic PET uptake from whole-body T1-weighted MRI. In training we implemented a balanced loss function to generate realistic uptake across a large dynamic range and computed losses along tomographic lines of response to mimic the PET acquisition. The predicted PET images are forward projected to produce synthetic PET time-of-flight (ToF) sinograms that can be used with vendor-provided PET reconstruction algorithms, including using CT-based attenuation correction (CTAC) and MR-based attenuation correction (MRAC). The resulting synthetic data recapitulates physiologic $^{18}$F-FDG uptake, e.g. high uptake localized to the brain and bladder, as well as uptake in liver, kidneys, heart and muscle. To simulate abnormalities with high uptake, we also insert synthetic lesions. We demonstrate that this synthetic PET data can be used interchangeably with real PET data for the PET quantification task of comparing CT and MR-based attenuation correction methods, achieving $\leq 7.6\%$ error in mean-SUV compared to using real data. These results together show that the proposed synthetic PET data pipeline can be reasonably used for development, evaluation, and validation of PET/MRI reconstruction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源