论文标题

扭曲双层石墨烯中拓扑保护转运的数学模型

Mathematical models of topologically protected transport in twisted bilayer graphene

论文作者

Bal, Guillaume, Cazeaux, Paul, Massatt, Daniel, Quinn, Solomon

论文摘要

扭曲的双层石墨烯产生了大型Moiré图案,在机械放松时形成三角网络。如果包括门控,每个三角形区域都会弥补电子狄拉克点,这些点具有巨大的拓扑绝缘子,其拓扑指数取决于山谷指数和堆叠类型。由于每个三角形都有两个相对充电的山谷,因此它们在拓扑上仍然很琐碎。 在这项工作中,我们通过分析和计算Continuum PDE模型来解决与该系统边缘电流有关的几个问题。首先,我们得出与单个山谷相对应的散装不变性,然后应用散装式接口对应关系以沿界面量化不对称传输。其次,我们引入了一个山谷耦合的连续模型,以显示在使用多尺度扩展的小型扰动的情况下,如何将山谷分解,以及如何用于较大缺陷的Valleys夫妇。第三,我们提出了一种证明大量连续体(伪 - )差异模型的方法,该模型通过诸如三角形网络顶点等连接来保留量化的不对称电流。我们使用光谱方法来支持所有这些参数,以计算相关电流和波袋传播。

Twisted bilayer graphene gives rise to large moiré patterns that form a triangular network upon mechanical relaxation. If gating is included, each triangular region has gapped electronic Dirac points that behave as bulk topological insulators with topological indices depending on valley index and the type of stacking. Since each triangle has two oppositely charged valleys, they remain topologically trivial. In this work, we address several questions related to the edge currents of this system by analysis and computation of continuum PDE models. Firstly, we derive the bulk invariants corresponding to a single valley, and then apply a bulk-interface correspondence to quantify asymmetric transport along the interface. Secondly, we introduce a valley-coupled continuum model to show how valleys are approximately decoupled in the presence of small perturbations using a multiscale expansion, and how valleys couple for larger defects. Thirdly, we present a method to prove for a large class of continuum (pseudo-)differential models that a quantized asymmetric current is preserved through a junction such as a triangular network vertex. We support all of these arguments with numerical simulations using spectral methods to compute relevant currents and wavepacket propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源