论文标题
随机频段矩阵的动态定位最多$ w \ ll n^{1/4} $
Dynamical Localization for Random Band Matrices up to $W\ll N^{1/4}$
论文作者
论文摘要
我们证明,当$ w \ ll n^{1/4} $时,带有带宽$ w $的大型$ n \ times n $ n $ Gaussan随机带矩阵在所有能量中都在所有能量上进行动态本地化。证明使用分数力矩方法和自适应Mermin-Wagner风格的变化。
We prove that a large class of $N\times N$ Gaussian random band matrices with band width $W$ exhibits dynamical Anderson localization at all energies when $W \ll N^{1/4}$. The proof uses the fractional moment method and an adaptive Mermin--Wagner style shift.