论文标题
使用可解释的机器学习的科学推断:分析模型以了解现实现象
Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena
论文作者
论文摘要
为了了解现实世界现象,科学家传统上使用了具有明显解释元素的模型。但是,现代机器学习(ML)模型虽然有力的预测因子缺乏这种直接的元素解释性(例如神经网络权重)。可解释的机器学习(IML)通过整体分析模型来得出解释,提供了解决方案。然而,当前的IML研究重点是审核ML模型,而不是利用它们进行科学推断。我们的工作桥接了这一差距,为设计IML方法的“属性描述符”提供了一个框架 - 不仅阐明了模型,还阐明了它所代表的现象。我们证明,以统计学习理论为基础的属性描述符可以有效地揭示观测数据的联合概率分布的相关性能。我们确定了适合科学推论的现有IML方法,并为开发具有量化认知不确定性的新描述符提供了指南。我们的框架使科学家能够利用ML模型进行推断,并为未来的IML研究提供了支持科学理解的方向。
To learn about real world phenomena, scientists have traditionally used models with clearly interpretable elements. However, modern machine learning (ML) models, while powerful predictors, lack this direct elementwise interpretability (e.g. neural network weights). Interpretable machine learning (IML) offers a solution by analyzing models holistically to derive interpretations. Yet, current IML research is focused on auditing ML models rather than leveraging them for scientific inference. Our work bridges this gap, presenting a framework for designing IML methods-termed 'property descriptors' -- that illuminate not just the model, but also the phenomenon it represents. We demonstrate that property descriptors, grounded in statistical learning theory, can effectively reveal relevant properties of the joint probability distribution of the observational data. We identify existing IML methods suited for scientific inference and provide a guide for developing new descriptors with quantified epistemic uncertainty. Our framework empowers scientists to harness ML models for inference, and provides directions for future IML research to support scientific understanding.