论文标题
在概率量子误差校正上
On the probabilistic quantum error correction
论文作者
论文摘要
概率量子误差校正是一个错误校正的过程,它使用后选择后确定是否成功恢复了编码的信息。在这项工作中,我们深入分析了通用噪声的错误校正过程的概率版本。我们概括了knill-laflamme条件,以解决概率可更正的错误。我们表明,对于某些噪声通道,我们应该将信息编码为混合状态,以最大程度地提高成功误差校正的可能性。最后,我们研究了概率误差校正过程的优势,而不是确定性的程序。降低成功纠正误差的可能性可以纠正由更广泛的噪声通道产生的错误。值得注意的是,如果误差是由与辅助量子系统的统一相互作用引起的,我们可以通过仅使用一个附加物理量子来恢复Qubit状态。
Probabilistic quantum error correction is an error-correcting procedure which uses postselection to determine if the encoded information was successfully restored. In this work, we deeply analyze probabilistic version of the error-correcting procedure for general noise. We generalized the Knill-Laflamme conditions for probabilistically correctable errors. We show that for some noise channels, we should encode the information into a mixed state to maximize the probability of successful error correction. Finally, we investigate an advantage of the probabilistic error-correcting procedure over the deterministic one. Reducing the probability of successful error correction allows for correcting errors generated by a broader class of noise channels. Significantly, if the errors are caused by a unitary interaction with an auxiliary qubit system, we can probabilistically restore a qubit state by using only one additional physical qubit.