论文标题
$ M $ - 符合功能,非对称麦克唐纳多项式和积极性猜想
$m$-Symmetric functions, non-symmetric Macdonald polynomials and positivity conjectures
论文作者
论文摘要
我们研究了$ m $ $ $ $ $ $的空间,由多项式组成,这些功能由多项式组成,这些函数在变量中是对称的$ x_ {m+1},x_ {m+2},x_ {m+3},\ dots $,但在变量中没有特殊对称性,但在变量中$ x_1 $ x_1,\ dots,\ dots,x____m。我们通过$ t $ - 对称非对称的麦克唐纳多项式的多项式获得$ M $ $ $ - $ $ MACDONALD的多项式,并表明它们形成了$ r_m $的基础。我们通过涉及其双重基础,Tableaux Combinatorics和Hecke代数发生器的一个复杂的过程来定义$ m $ $ $ s的Schur函数,然后证明其一些最基本的属性。我们猜想,$ M $ symmetric MacDonald多项式(适当地归一化且众所周知地修改)以$ M $ -SMMETRIC SCHUR功能的积极扩展。我们在$(q,t)$ - koska系数上获得关系$ k_ {ωλ}(q,t)$中的$ m $ - $ - 对称世界,并特别表明通常的$(q,q,t)$ - koska系数是$ k_ {ωλ}(q om q,q,q,q,t)的特殊情况。最后,我们表明,当$ m $很大时,就非对称的麦克唐纳多条件的扩展而言,就非对称的Hall-Littlewood多项式而言,阳性猜想(Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo a Modulo。
We study the space, $R_m$, of $m$-symmetric functions consisting of polynomials that are symmetric in the variables $x_{m+1},x_{m+2},x_{m+3},\dots$ but have no special symmetry in the variables $x_1,\dots,x_m$. We obtain $m$-symmetric Macdonald polynomials by $t$-symmetrizing non-symmetric Macdonald polynomials, and show that they form a basis of $R_m$. We define $m$-symmetric Schur functions through a somewhat complicated process involving their dual basis, tableaux combinatorics, and the Hecke algebra generators, and then prove some of their most elementary properties. We conjecture that the $m$-symmetric Macdonald polynomials (suitably normalized and plethystically modified) expand positively in terms of $m$-symmetric Schur functions. We obtain relations on the $(q,t)$-Koska coefficients $K_{ΩΛ}(q,t)$ in the $m$-symmetric world, and show in particular that the usual $(q,t)$-Koska coefficients are special cases of the $K_{ΩΛ}(q,t)$'s. Finally, we show that when $m$ is large, the positivity conjecture, modulo a certain subspace, becomes a positivity conjecture on the expansion of non-symmetric Macdonald polynomials in terms of non-symmetric Hall-Littlewood polynomials.