论文标题
有限系统中的温度波动:应用于一维iSing链
Temperature fluctuations in finite systems: Application to the one-dimensional Ising chain
论文作者
论文摘要
超级巨星的理论最初是为了研究复杂非平衡系统的研究,最近已扩展到与有限环境相互作用的小型系统的研究,因为这种系统表现出有趣的相似统计行为。在这两种情况下,都有几种适用的定义,即统计集合的内在或依赖性的反向温度。在这项工作中,我们开发了这些概念,将注意力集中在一个孤立的,一维的Ising链的区域上,这是一个不遵循规范Gibbs分布的子系统的示例。在此示例中,我们明确地表明,超级巨星无法描述子系统的行为,并验证了最近报道的基本和微型逆逆温度之间的关系。我们的结果暗示了一个新的框架,用于处理具有正热容量的微域系统区域,应由某些新的超级巨星外的一类新的统计集合来描述,但仍保留温度波动的概念。
The theory of superstatistics, originally proposed for the study of complex nonequilibrium systems, has recently been extended to studies of small systems interacting with a finite environment, because such systems display interestingly similar statistical behavior. In both situations there are several applicable definitions of inverse temperature, either intrinsic or dependent of the statistical ensemble. In this work we develop these concepts focusing our attention on a region of an isolated, one-dimensional Ising chain as an example of a subsystem that does not follow the canonical Gibbs distribution. For this example, we explicitly show that superstatistics cannot describe the behavior of the subsystem, and verify a recently reported relation between the fundamental and microcanonical inverse temperatures. Our results hint at a new framework for dealing with regions of microcanonical systems with positive heat capacity, which should be described by some new class of statistical ensembles outside superstatistics but still preserving the notion of temperature fluctuations.