论文标题

用于机器人技术的全球优化问题的张量列车

Tensor Train for Global Optimization Problems in Robotics

论文作者

Shetty, Suhan, Lembono, Teguh, Loew, Tobias, Calinon, Sylvain

论文摘要

许多数值优化技术的收敛高度取决于对求解器的初始猜测。为了解决这个问题,我们提出了一种新颖的方法,该方法利用张量方法来初始化Global Optima附近的现有优化求解器。我们的方法不需要访问良好解决方案的数据库。我们首先将成本函数转换为任务参数和优化变量,将其转换为概率密度函数。与现有方法不同,任务参数的关节概率分布和优化变量是使用张量列车模型近似的,该模型可以有效地调节和采样。我们将任务参数视为随机变量,对于给定的任务,我们为条件分布的决策变量生成样本,以初始化优化求解器。我们的方法比现有方法更快地产生多个解决方案(当时存在)。我们首先评估基准函数的方法以进行数值优化,这些优化很难使用基于梯度的优化求解器固定初始化。结果表明,所提出的方法可以生成靠近全局Optima和多种模式的样品。然后,我们通过将框架应用于具有障碍物和运动计划问题的逆运动学来证明我们与机器人技术的一般性和相关性。

The convergence of many numerical optimization techniques is highly dependent on the initial guess given to the solver. To address this issue, we propose a novel approach that utilizes tensor methods to initialize existing optimization solvers near global optima. Our method does not require access to a database of good solutions. We first transform the cost function, which depends on both task parameters and optimization variables, into a probability density function. Unlike existing approaches, the joint probability distribution of the task parameters and optimization variables is approximated using the Tensor Train model, which enables efficient conditioning and sampling. We treat the task parameters as random variables, and for a given task, we generate samples for decision variables from the conditional distribution to initialize the optimization solver. Our method can produce multiple solutions (when they exist) faster than existing methods. We first evaluate the approach on benchmark functions for numerical optimization that are hard to solve using gradient-based optimization solvers with a naive initialization. The results show that the proposed method can generate samples close to global optima and from multiple modes. We then demonstrate the generality and relevance of our framework to robotics by applying it to inverse kinematics with obstacles and motion planning problems with a 7-DoF manipulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源