论文标题

自动排的整体强大运动控制器框架

A Holistic Robust Motion Controller Framework for Autonomous Platooning

论文作者

Wang, Hong, Peng, Li-Ming, Wei, Zi-Chun, Yang, Kai, Bai, Xian-Xu, Jiang, Luo, Hashemi, Ehsan

论文摘要

安全是自动排的最重要的关注点。车辆对车辆(V2V)通信延迟和障碍突然出现将触发预期功能(SOTIF)问题的安全性问题。这项研究提出了一个整体稳健的运动控制器框架(MCF),用于智能和连接的车辆排系统。 MCF利用层次结构来解决复杂驾驶环境和随时间变化的通信延迟下的纵向弦稳定性和横向控制问题。首先,开发了H-侵蚀反馈控制器,以确保在上层协调层(UCL)中时变频率延迟下排的稳健性。 UCL的输出将作为参考信号传递到较低级别的运动规划层(LML)。其次,在LML中实现了模型预测控制(MPC)算法,以实现多目标控制,该控制能够全面考虑参考信号,人工电位字段和多个车辆动力学约束。此外,在案例研究中共同构图了三个关键场景,包括在随着时变的沟通延迟,合并和避免障碍的情况下进行排。仿真结果表明,与单个结构MPC相比,提议的MCF可以更好地抑制位置错误传播,并在三种情况下的最大位置误差($ 19.2 \%$,$ 59.8 \%\%$ $和$ 15.3 \%$)中得到改善。最后,通过硬件实验验证了所提出的MCF的实用性和有效性。 Speedgoat实时目标机器提出的方法的平均导电时间为1.1毫秒,满足实时要求。

Safety is the foremost concern for autonomous platooning. The vehicle-to-vehicle (V2V) communication delay and the sudden appearance of obstacles will trigger the safety of the intended functionality (SOTIF) issues for autonomous platooning. This research proposes a holistic robust motion controller framework (MCF) for an intelligent and connected vehicle platoon system. The MCF utilizes a hierarchical structure to resolve the longitudinal string stability and the lateral control problem under the complex driving environment and time-varying communication delay. Firstly, the H-infinity feedback controller is developed to ensure the robustness of the platoon under time-varying communication delay in the upper-level coordination layer (UCL). The output from UCL will be delivered to the lower-level motion-planning layer (LML) as reference signals. Secondly, the model predictive control (MPC) algorithm is implemented in the LML to achieve multi-objective control, which comprehensively considers the reference signals, the artificial potential field, and multiple vehicle dynamics constraints. Furthermore, three critical scenarios are co-simulated for case studies, including platooning under time-varying communication delay, merging, and obstacle avoidance scenarios. The simulation results indicate that, compared with single-structure MPC, the proposed MCF can offer a better suppression on position error propagation, and get improvements on maximum position error in the three scenarios by $19.2\%$, $59.8\%$, and $15.3\%$, respectively. Last, the practicability and effectiveness of the proposed MCF are verified via hardware-in-the-loop experiment. The average conducting time of the proposed method on Speedgoat real-time target machine is 1.1 milliseconds, which meets the real-time requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源