论文标题
重新打开洞的论点
Reopening the Hole Argument
论文作者
论文摘要
这份说明性论文将孔的论点(GR)与Choquet-Bruhat和Geroch(1969)的众所周知的定理联系起来,涉及到爱因斯坦场方程的全球双曲解决方案的存在和独特性。就像孔参数的Earman-Norton(1987)版本(最初是由于爱因斯坦造成的)一样,该定理暴露了确定性和某些时空实质性主义之间的张力。但是,根据``数学实践''的``Weatherall''(2018年)和追随者的攻击似乎不太容易受到攻击,因为定理仅谈论异构体,因此并未通过差异性来识别heatherall对象。定理对GR哲学的其他含义,我们重新考虑了Butterfield(1987)对确定论的有影响力的定义。如果它的目标是表达\ gr \在没有凯奇(Cauchy Horizons)的情况下是确定性的,尽管它的原始形式确实捕捉了GR在存在下的方式不确定的方式!此外,在GR等法中以量规对称性形式出现,而Poincar'e在特殊相对论中也是如此。最后,我讨论了定理对科学哲学的一些含义:接受确定性角仍然需要弗莱格风格的抽象主义和希尔伯特风格的结构主义之间的选择。在后者中,结构现实主义和经验主义的结构主义之间(我赞成)。
This expository paper relates the Hole Argument in general relativity (GR) to the well-known theorem of Choquet-Bruhat and Geroch (1969) on the existence and uniqueness of globally hyperbolic solutions to the Einstein field equations. Like the Earman-Norton (1987) version of the Hole Argument (which is originally due to Einstein), this theorem exposes the tension beween determinism and some version of spacetime substantivalism. But it seems less vulnerable to the campaign by Weatherall (2018) and followers to close the Hole Argument on the basis of ``mathematical practice'', since the theorem only talks about isometries and hence does not make the pointwise identifications via diffeomorphisms that Weatherall objects to. Among other implications of the theorem for the philosophy of GR, we reconsider Butterfield's (1987) influential definition of determinism. This should be amended if its goal is to express the idea that \GR\ is deterministic in the absence of Cauchy horizons, although its original form does capture the way GR is indeterministic in their presence! Furthermore, in GR isometries come out as gauge symmetries, as do Poincar'e transformations in special relativity. Finally, I discuss some implications of the theorem for the philosophy of science: accepting the determinism horn still requires a choice between Frege-style abstractionism and Hilbert-style structuralism; and, within the latter, between structural realism and empiricist structuralism (which I favour).