论文标题
根据中微子检测器
Right-handed sneutrino and gravitino multicomponent dark matter in light of neutrino detectors
论文作者
论文摘要
我们研究了右撇子(RH)Sneutrinos和Gravitinos可以共存并解释暗物质(DM)问题的可能性。我们比较了最小的超对称标准模型(MSSM)和近代添加Rh Neutminos超级场的延伸,并特别强调了后者。如果Gravitino是最轻的超对称粒子(LSP),而Rh sneutrino则是近代到LSP(NLSP),则较重的粒子通过LH和RH Neutrinos的标量伴侣之间的混合而衰减前来的左手(LH)中微子。但是,planck质量抑制了相互作用,如果LH-RH sneutrino混合参数很小,则$ \ ll o(10^{ - 2})$,则可能会超越宇宙年龄。作为副产品,NLSP到LSP衰减会在当前和计划中的中微子望远镜的球场中产生单色中微子,例如Super-Kamiokande,Icecube和Antares,我们用来设置约束并显示出检测前景。在NMSSM+RHN中,假设Gluino质量参数$ m_3 = 3 $ tev,我们发现了Gravitino Mass $ M_ {3/2} \ Gtrsim 1-600 $ GEV的以下下限,GTRSIM 1-600 $ GEV和重新加热的温度$ T_R \ t_r \ gtrsim 10^5-3 \ 3 \ 3 \ 3 \ 3 \ times 10^7 $ mm__ 10-800 $ GEV。如果我们服用$ m_3 = 10 $ tev,则$ t_r $的限制是通过一个数量级放松的。
We investigate the possibility that right-handed (RH) sneutrinos and gravitinos can coexist and explain the dark matter (DM) problem. We compare extensions of the minimal supersymmetric standard model (MSSM) and the next-to-MSSM (NMSSM) adding RH neutrinos superfields, with special emphasis on the latter. If the gravitino is the lightest supersymmetric particle (LSP) and the RH sneutrino the next-to-LSP (NLSP), the heavier particle decays to the former plus left-handed (LH) neutrinos through the mixing between the scalar partners of the LH and RH neutrinos. However, the interaction is suppressed by the Planck mass, and if the LH-RH sneutrino mixing parameter is small, $\ll O(10^{-2})$, a long-lived RH sneutrino NLSP is possible even surpassing the age of the Universe. As a byproduct, the NLSP to LSP decay produces monochromatic neutrinos in the ballpark of current and planned neutrino telescopes like Super-Kamiokande, IceCube and Antares that we use to set constraints and show prospects of detection. In the NMSSM+RHN, assuming a gluino mass parameter $M_3 = 3$ TeV we found the following lower limits for the gravitino mass $m_{3/2} \gtrsim 1-600$ GeV and the reheating temperature $T_R \gtrsim 10^5 - 3 \times 10^7$ GeV, for $m_{\tildeν_R} \sim 10-800$ GeV. If we take $M_3=10$ TeV, then the limits on $T_R$ are relaxed by one order of magnitude.