论文标题

RECO:用于住宅社区布局计划的数据集

ReCo: A Dataset for Residential Community Layout Planning

论文作者

Chen, Xi, Xiong, Yun, Wang, Siqi, Wang, Haofen, Sheng, Tao, Zhang, Yao, Ye, Yu

论文摘要

布局规划在建筑和城市设计领域非常重要。在携带城市功能的各种基本单元中,住宅社区在支持人类生活中起着至关重要的作用。因此,自深度学习的出现以来,居民社区的布局规划一直引起人们的关注,并引起了人们的特别关注,从而促进了自动化的布局产生和空间模式识别。但是,研究圈通常会遭受住宅社区布局基准或高质量数据集的不足,这阻碍了对住宅社区布局计划的数据驱动方法的未来探索。数据集的缺乏很大程度上是由于大型现实世界中的住宅数据获取和长期专家筛查的困难。为了解决这些问题并推进基准数据集,用于智能城市开发中各种智能空间设计和分析应用程序,我们介绍了住宅社区布局计划(RECO)数据集,这是迄今为止与现实世界社区相关的第一个也是最大的开放源矢量数据集。 RECO数据集以多种数据格式呈现,其中包含37,646个住宅社区布局计划,涵盖了598,728个带有高度信息的住宅建筑。 RECO可以方便地适应与住宅社区布局相关的城市设计任务,例如生成布局设计,形态模式识别和空间评估。为了验证自动化住宅社区布局计划中RECO的实用性,两个基于生成的对抗网络(GAN)的生成模型将进一步应用于数据集。我们希望Reco数据集能够激发智能设计及其他方面的更具创造力和实用性的工作。 RECO数据集发表在以下网址:https://www.kaggle.com/fdudsde/reco-dataset。

Layout planning is centrally important in the field of architecture and urban design. Among the various basic units carrying urban functions, residential community plays a vital part for supporting human life. Therefore, the layout planning of residential community has always been of concern, and has attracted particular attention since the advent of deep learning that facilitates the automated layout generation and spatial pattern recognition. However, the research circles generally suffer from the insufficiency of residential community layout benchmark or high-quality datasets, which hampers the future exploration of data-driven methods for residential community layout planning. The lack of datasets is largely due to the difficulties of large-scale real-world residential data acquisition and long-term expert screening. In order to address the issues and advance a benchmark dataset for various intelligent spatial design and analysis applications in the development of smart city, we introduce Residential Community Layout Planning (ReCo) Dataset, which is the first and largest open-source vector dataset related to real-world community to date. ReCo Dataset is presented in multiple data formats with 37,646 residential community layout plans, covering 598,728 residential buildings with height information. ReCo can be conveniently adapted for residential community layout related urban design tasks, e.g., generative layout design, morphological pattern recognition and spatial evaluation. To validate the utility of ReCo in automated residential community layout planning, two Generative Adversarial Network (GAN) based generative models are further applied to the dataset. We expect ReCo Dataset to inspire more creative and practical work in intelligent design and beyond. The ReCo Dataset is published at: https://www.kaggle.com/fdudsde/reco-dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源