论文标题
具有结构化变分图自动编码器的精确节点特征估计
Accurate Node Feature Estimation with Structured Variational Graph Autoencoder
论文作者
论文摘要
给定图表具有部分观察到节点特征,我们如何才能准确估计缺失功能?特征估计是一个至关重要的问题,用于分析在数据收集过程中通常缺少特征的真实图表。准确的估计不仅提供了节点的多种信息,而且还支持需要全面观察节点特征的图形神经网络的推断。但是,设计一种估计高维特征的有效方法是一项挑战,因为它要求估算器具有较大的表示能力,从而增加了过度拟合的风险。在这项工作中,我们提出了SVGA(结构化变分图自动编码器),这是一种精确的特征估计方法。 SVGA通过结构化变异推断将强固体化应用于潜在变量的分布,该变量推断将变量的先前作为基于图结构的高斯马尔可夫随机字段建模。结果,SVGA结合了概率推理和图形神经网络的优势,在实际数据集中实现了最新性能。
Given a graph with partial observations of node features, how can we estimate the missing features accurately? Feature estimation is a crucial problem for analyzing real-world graphs whose features are commonly missing during the data collection process. Accurate estimation not only provides diverse information of nodes but also supports the inference of graph neural networks that require the full observation of node features. However, designing an effective approach for estimating high-dimensional features is challenging, since it requires an estimator to have large representation power, increasing the risk of overfitting. In this work, we propose SVGA (Structured Variational Graph Autoencoder), an accurate method for feature estimation. SVGA applies strong regularization to the distribution of latent variables by structured variational inference, which models the prior of variables as Gaussian Markov random field based on the graph structure. As a result, SVGA combines the advantages of probabilistic inference and graph neural networks, achieving state-of-the-art performance in real datasets.