论文标题
$ h^2- $δ-$δ-$常规域上的电晕问题
$H^2-$Corona problem on $δ-$regular domains
论文作者
论文摘要
我们证明了一个$ h^2- $ corona定理,带有估计$ c(δ)=cΔ^{ - 1- q} | \logΔ| $ for $δ\ ll 1 $在delta-regular-ground域上,其中$ q = \ min \ min \ min \ \ \ {n,m-1 \} $和$ m $是生成器的数量。这类域包含具有平稳的有界域,并具有定义功能,这些函数在d'Angelo有限型类型的边界和伪共元域上具有plurisubharmonic。
We prove an $H^2-$Corona theorem with estimate $C(δ)=Cδ^{-1-q}|\log δ|$ for $δ\ll 1$ on delta-regular domains, where $q=\min\{n,m-1\}$ and $m$ is the number of generators. This class of domains includes smooth bounded domains with defining functions that are plurisubharmonic on boundaries and pseudoconvex domains of D'Angelo finite type.