论文标题
磁性超材料中的可重构储层计算
Reconfigurable Reservoir Computing in a Magnetic Metamaterial
论文作者
论文摘要
遗传内储层计算(RC)利用功能材料的内在物理响应来执行复杂的计算任务。由于其巨大的状态空间,非线性新兴动态和非挥发性记忆,磁性超材料是RC的令人兴奋的候选者。但是,要适合广泛的任务,需要材料系统才能表现出广泛的特性,并且在实验上隔离这些行为通常很难证明很困难。通过使用由一系列相互连接的磁性纳米线组成的电气可访问的设备(一种显示出复杂的新兴动力学的系统),我们在这里显示重新配置储层体系结构如何允许对不同方面的动力学行为进行开发。通过具有截然不同的计算要求的不同基准任务中的最新性能,可以通过更改材料系统周围的输入/输出体系结构来获得的其他计算配置性,从而证明了这一点。
In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be suitable for a broad range of tasks, the material system is required to exhibit a broad range of properties, and isolating these behaviours experimentally can often prove difficult. By using an electrically accessible device consisting of an array of interconnected magnetic nanorings -- a system shown to exhibit complex emergent dynamics -- here we show how reconfiguring the reservoir architecture allows exploitation of different aspects the system's dynamical behaviours. This is evidenced through state-of-the-art performance in diverse benchmark tasks with very different computational requirements, highlighting the additional computational configurability that can be obtained by altering the input/output architecture around the material system.