论文标题

稀疏复杂高斯矩阵的可逆性

Invertibility of Sparse Complex Gaussian Matrices

论文作者

Zeng, Edward

论文摘要

令$σ_n(\ cdot)$表示$ n \ times n $矩阵的最小值。众所周知,如果从$ n \ times n $矩阵和$ n $矩阵和$ \ mathbb {p} [p} [p} [p} [p} [σ_n(v vareps \ vareps)中,$ \ mathbb {p} [σ_n(a)\ le \ varepsilon] \ le \ lepsilon n $如果$ a $ n^2 $如果$ a $是从复杂的Ginibre合奏中汲取的。在本文中,对于稀疏的随机矩阵,我们将显示出类似的现象。

Let $σ_n(\cdot)$ denote the least singular value of a $n \times n$ matrix. It is well-known that $\mathbb{P}[σ_n(A) \le \varepsilon] \le \varepsilon n$ if $A$ is drawn from the real Ginibre ensemble of $n \times n$ matrices and $\mathbb{P}[σ_n(A) \le \varepsilon] \le \varepsilon^2 n^2$ if $A$ is drawn from the complex Ginibre ensemble. In this paper, we will show a similar phenomenon occurs for sparse random matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源