论文标题
GCVAE:可控制的变异自动编码器
GCVAE: Generalized-Controllable Variational AutoEncoder
论文作者
论文摘要
变化自动编码器(VAE)最近已用于对复杂密度分布的无监督分离学习。存在许多变体,以鼓励潜在空间中的分解,同时改善重建。但是,在达到极低的重建误差和高度分离得分之间,没有人同时进行权衡。我们提出了一个广义的框架,可以在有限的优化下应对这一挑战,并证明它在平衡重建时胜过现有模型的最先进模型。我们介绍了三个可控的拉格朗日超级参数,以控制重建损失,KL差异损失和相关度量。我们证明,重建网络中的信息最大化等于在合理假设和约束放松下摊销过程中的信息最大化。
Variational autoencoders (VAEs) have recently been used for unsupervised disentanglement learning of complex density distributions. Numerous variants exist to encourage disentanglement in latent space while improving reconstruction. However, none have simultaneously managed the trade-off between attaining extremely low reconstruction error and a high disentanglement score. We present a generalized framework to handle this challenge under constrained optimization and demonstrate that it outperforms state-of-the-art existing models as regards disentanglement while balancing reconstruction. We introduce three controllable Lagrangian hyperparameters to control reconstruction loss, KL divergence loss and correlation measure. We prove that maximizing information in the reconstruction network is equivalent to information maximization during amortized inference under reasonable assumptions and constraint relaxation.