论文标题

CCP:相关的聚类和降低维度的投影

CCP: Correlated Clustering and Projection for Dimensionality Reduction

论文作者

Hozumi, Yuta, Wang, Rui, Wei, Guo-Wei

论文摘要

大多数维度降低方法采用从基质对角线化获得的频域表示,对于具有较高固有维度的大型数据集可能不会有效。为了应对这一挑战,相关的聚类和投影(CCP)提供了一种新颖的数据域策略,不需要解决任何矩阵。 CCP将高维特征划分为相关的群集,然后根据样本相关性将每个群集中的特征与一个维度相关。引入了残基相似度(R-S)分数和索引,Riemannian歧管中的数据形状以及基于代数拓扑的持久性Laplacian进行可视化和分析。建议的方法通过与各种机器学习算法相关的基准数据集验证。

Most dimensionality reduction methods employ frequency domain representations obtained from matrix diagonalization and may not be efficient for large datasets with relatively high intrinsic dimensions. To address this challenge, Correlated Clustering and Projection (CCP) offers a novel data domain strategy that does not need to solve any matrix. CCP partitions high-dimensional features into correlated clusters and then projects correlated features in each cluster into a one-dimensional representation based on sample correlations. Residue-Similarity (R-S) scores and indexes, the shape of data in Riemannian manifolds, and algebraic topology-based persistent Laplacian are introduced for visualization and analysis. Proposed methods are validated with benchmark datasets associated with various machine learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源