论文标题
晶格上的准二维斜锥的地平线物理
Horizon physics of quasi-one-dimensional tilted Weyl cones on a lattice
论文作者
论文摘要
为了模拟在弯曲的空间中使用一个,两个和三个空间维度的无质量的毛茸茸的费米子的动力学,我们用空间变化的跳动构建了紧密结合的汉密尔顿人。这些模型代表倾斜的Weyl半法,其中倾斜随位置而变化,与黑洞地平线附近的光锥相似。我们通过数值评估晶格上的波数据包的传播,然后将它们与相应弯曲时空的测量学进行比较,从而说明了这些模型中的重力类比。我们还表明,这些空间变化系统中电子的运动可以通过能量的保存和准准综合保存来理解。散射矩阵的计算证实了这一图片,这表明对准膜的任何非连续变化的指数抑制。最后,我们表明,晶格模型中的视野也可以使用特殊设计的倾斜轮廓在有限的能量下构建。
To simulate the dynamics of massless Dirac fermions in curved spacetimes with one, two, and three spatial dimensions we construct tight-binding Hamiltonians with spatially varying hoppings. These models represent tilted Weyl semimetals where the tilting varies with position, in a manner similar to the light cones near the horizon of a black hole. We illustrate the gravitational analogies in these models by numerically evaluating the propagation of wave packets on the lattice and then comparing them to the geodesics of the corresponding curved spacetime. We also show that the motion of electrons in these spatially varying systems can be understood through the conservation of energy and the quasi-conservation of quasimomentum. This picture is confirmed by calculations of the scattering matrix, which indicate an exponential suppression of any noncontinuous change in the quasimomentum. Finally, we show that horizons in the lattice models can be constructed also at finite energies using specially designed tilting profiles.