论文标题
部分可观测时空混沌系统的无模型预测
A simple data-driven method to optimise the penalty strengths of penalised models and its application to non-parametric smoothing
论文作者
论文摘要
感兴趣的信息通常只能通过模型拟合从数据中提取。当无法从第一原理中推导这种模型的功能形式时,必须在不同的模型之间做出选择。在这种情况下,一种常见的方法是通过尝试减少拟合变量的数量(或模型灵活性)尽可能多地减少模型中的信息丢失,同时仍可以对数据产生可接受的拟合。通过Akaike信息标准(AIC)进行模型选择提供了OCCAM剃须刀的实现。我们认为,可以应用相同的原则来优化受惩罚最大样本模型的惩罚强度。但是,虽然在典型的应用中,AIC用于从有限的,离散的最大样本模型中进行选择,但罚款优化需要从候选模型的连续模型中进行选择,并且这些模型违反了最大样本状况。我们得出包含此情况的广义信息标准AICP。它自然涉及有效的自由参数的概念,该参数非常灵活,可以应用于任何模型,无论是线性还是非线性,参数或非参数,并且在参数上具有有或没有约束方程。我们表明,广义AICP允许在不需要单独的蒙特卡洛模拟的情况下优化任何惩罚强度。作为示例应用程序,我们讨论了非参数模型中平滑的优化,该模型在天体物理学中具有许多应用,例如在动态建模,光谱拟合或重力镜头中。
Information of interest can often only be extracted from data by model fitting. When the functional form of such a model can not be deduced from first principles, one has to make a choice between different possible models. A common approach in such cases is to minimise the information loss in the model by trying to reduce the number of fit variables (or the model flexibility, respectively) as much as possible while still yielding an acceptable fit to the data. Model selection via the Akaike Information Criterion (AIC) provides such an implementation of Occam's razor. We argue that the same principles can be applied to optimise the penalty-strength of a penalised maximum-likelihood model. However, while in typical applications AIC is used to choose from a finite, discrete set of maximum-likelihood models the penalty optimisation requires to select out of a continuum of candidate models and these models violate the maximum-likelihood condition. We derive a generalised information criterion AICp that encompasses this case. It naturally involves the concept of effective free parameters which is very flexible and can be applied to any model, be it linear or non-linear, parametric or non-parametric, and with or without constraint equations on the parameters. We show that the generalised AICp allows an optimisation of any penalty-strength without the need of separate Monte-Carlo simulations. As an example application, we discuss the optimisation of the smoothing in non-parametric models which has many applications in astrophysics, like in dynamical modeling, spectral fitting or gravitational lensing.