论文标题
通过使用混合优化算法,使用增强的MRI图像来检测和分类脑肿瘤,改进了深度卷积神经网络
An Improved Deep Convolutional Neural Network by Using Hybrid Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented MRI Images
论文作者
论文摘要
自动化的脑肿瘤检测已成为一项高度可观的医学诊断研究。在最近的医学诊断中,高度考虑检测和分类用于采用机器学习和深度学习技术。然而,需要提高当前模型的准确性和性能以进行合适的治疗。在本文中,通过采用增强的优化算法来确保深度卷积学习的改善,因此,基于改进的Harris Hawks优化(HHO),深度卷积神经网络(DCNN)被认为是G-HHO。这种杂交具有灰狼优化(GWO)和HHO,以提供更好的结果,从而限制了收敛速度和提高性能。此外,采用大小阈值来分割强调脑肿瘤检测的肿瘤部分。进行了实验研究,以验证2073年总数增强MRI图像的建议方法的性能。通过将其与巨大增强MRI图像上的九种现有算法进行比较,以准确性,精度,召回,F量,执行时间和内存使用情况进行比较,可以确保该技术的性能。性能比较表明,DCNN-G-HHO比现有方法更成功,尤其是在97%的评分准确度中。此外,统计性能分析表明,建议的方法更快,并且在MR图像上识别和分类脑肿瘤癌的记忆力较少。此验证的实施是在Python平台上进行的。建议方法的相关代码可在以下网址提供:https://github.com/bryarahassan/dcnn-g-hho。
Automated brain tumor detection is becoming a highly considerable medical diagnosis research. In recent medical diagnoses, detection and classification are highly considered to employ machine learning and deep learning techniques. Nevertheless, the accuracy and performance of current models need to be improved for suitable treatments. In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms, Thus, Deep Convolutional Neural Network (DCNN) based on improved Harris Hawks Optimization (HHO), called G-HHO has been considered. This hybridization features Grey Wolf Optimization (GWO) and HHO to give better results, limiting the convergence rate and enhancing performance. Moreover, Otsu thresholding is adopted to segment the tumor portion that emphasizes brain tumor detection. Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images. The technique's performance was ensured by comparing it with the nine existing algorithms on huge augmented MRI images in terms of accuracy, precision, recall, f-measure, execution time, and memory usage. The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%. Additionally, the statistical performance analysis indicates that the suggested approach is faster and utilizes less memory at identifying and categorizing brain tumor cancers on the MR images. The implementation of this validation is conducted on the Python platform. The relevant codes for the proposed approach are available at: https://github.com/bryarahassan/DCNN-G-HHO.