论文标题

Cunduda:对比度很少,无监督的域适应医学图像分段

ConFUDA: Contrastive Fewshot Unsupervised Domain Adaptation for Medical Image Segmentation

论文作者

Gu, Mingxuan, Vesal, Sulaiman, Thies, Mareike, Pan, Zhaoya, Wagner, Fabian, Rusu, Mirabela, Maier, Andreas, Kosti, Ronak

论文摘要

无监督的域适应性(UDA)旨在将知识从标记的源域中学到的知识转移到未标记的目标域。在UDA的背景下,对比度学习(CL)可以帮助更好地在特征空间中分开类。但是,在图像分割中,由于计算像素对比度损失而引起的大型内存足迹使其使用效率很高。此外,在医学成像中不容易获得标记的目标数据,并且获得新样本并不经济。结果,在这项工作中,当只有几个(少数图)或一个(OneShot)图像可从目标域中获得时,我们将解决更具挑战性的UDA任务。我们应用样式转移模块来减轻目标样本的稀缺性。然后,为了使源和目标特征保持一致并解决传统对比损失的记忆问题,我们提出了基于质心的对比度学习(CCL)和质心规范规则器(CNR),以在方向和幅度上优化对比度对。此外,我们提出了多派对质心学习(MPCCL),以进一步降低目标特征的差异。与基线相比,MS-CMRSEG数据集对MS-CMRSEG数据集的几乎没有Shot评估表明,Cunduda在目标域上的分割性能提高了0.34个骰子得分的0.34,并且在更严格的Oneshot设置中提高了0.31骰子分数。

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled target domain. Contrastive learning (CL) in the context of UDA can help to better separate classes in feature space. However, in image segmentation, the large memory footprint due to the computation of the pixel-wise contrastive loss makes it prohibitive to use. Furthermore, labeled target data is not easily available in medical imaging, and obtaining new samples is not economical. As a result, in this work, we tackle a more challenging UDA task when there are only a few (fewshot) or a single (oneshot) image available from the target domain. We apply a style transfer module to mitigate the scarcity of target samples. Then, to align the source and target features and tackle the memory issue of the traditional contrastive loss, we propose the centroid-based contrastive learning (CCL) and a centroid norm regularizer (CNR) to optimize the contrastive pairs in both direction and magnitude. In addition, we propose multi-partition centroid contrastive learning (MPCCL) to further reduce the variance in the target features. Fewshot evaluation on MS-CMRSeg dataset demonstrates that ConFUDA improves the segmentation performance by 0.34 of the Dice score on the target domain compared with the baseline, and 0.31 Dice score improvement in a more rigorous oneshot setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源