论文标题

渐进式甘诺利:逐渐生长的gan的异常检测

Progressive GANomaly: Anomaly detection with progressively growing GANs

论文作者

Madzia-Madzou, Djennifer K., Kuijf, Hugo J.

论文摘要

在医学成像中,获得大量标记数据通常是一个障碍,因为注释和病理很少。异常检测是一种能够检测到看不见的异常数据的方法,而仅对正常(未经通知)数据进行培训。存在基于生成对抗网络(GAN)的几种算法来执行此任务,但是由于gan的不稳定,存在某些局限性。本文提出了一种新方法,通过将现有方法Ganomaly与逐渐增长的甘纳斯相结合。考虑到其产生高分辨率图像的能力,后者更稳定。该方法是使用时尚MNIST,医学分布分析挑战(情绪)和内部脑部MRI测试的;使用尺寸16x16和32x32的斑块。渐进式甘诺利(Ganomaly)的表现优于一级SVM或时尚MNIST的常规甘诺利。人工异常是在具有不同强度和直径的情绪图像中创建的。渐进式甘诺利检测到强度和大小变化的最大异常。此外,从渐进的甘诺利中证明,间歇性重建也更好。在内部脑部MRI数据集上,常规甘诺利的表现优于其他方法。

In medical imaging, obtaining large amounts of labeled data is often a hurdle, because annotations and pathologies are scarce. Anomaly detection is a method that is capable of detecting unseen abnormal data while only being trained on normal (unannotated) data. Several algorithms based on generative adversarial networks (GANs) exist to perform this task, yet certain limitations are in place because of the instability of GANs. This paper proposes a new method by combining an existing method, GANomaly, with progressively growing GANs. The latter is known to be more stable, considering its ability to generate high-resolution images. The method is tested using Fashion MNIST, Medical Out-of-Distribution Analysis Challenge (MOOD), and in-house brain MRI; using patches of sizes 16x16 and 32x32. Progressive GANomaly outperforms a one-class SVM or regular GANomaly on Fashion MNIST. Artificial anomalies are created in MOOD images with varying intensities and diameters. Progressive GANomaly detected the most anomalies with varying intensity and size. Additionally, the intermittent reconstructions are proven to be better from progressive GANomaly. On the in-house brain MRI dataset, regular GANomaly outperformed the other methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源