论文标题

无线多访问策略及其信号的可扩展联合学习

Scalable Joint Learning of Wireless Multiple-Access Policies and their Signaling

论文作者

Mota, Mateus P., Valcarce, Alvaro, Gorce, Jean-Marie

论文摘要

在本文中,我们应用了一个多代理增强学习(MARL)框架,允许基站(BS)和用户设备(UES)共同学习频道访问策略及其在无线的多个访问方案中的信号。在此框架中,BS和UES是需要合作才能提供数据的增强剂学习(RL)代理。与无争议的基线和基于争论的基线的比较表明,即使在高流量情况下,我们的框架在高速公路方面也取得了出色的性能,同时保持低碰撞率。研究了所提出的方法的可伸缩性,因为它是MARL中的主要问题,本文提供了第一个结果以解决它。

In this paper, we apply an multi-agent reinforcement learning (MARL) framework allowing the base station (BS) and the user equipments (UEs) to jointly learn a channel access policy and its signaling in a wireless multiple access scenario. In this framework, the BS and UEs are reinforcement learning (RL) agents that need to cooperate in order to deliver data. The comparison with a contention-free and a contention-based baselines shows that our framework achieves a superior performance in terms of goodput even in high traffic situations while maintaining a low collision rate. The scalability of the proposed method is studied, since it is a major problem in MARL and this paper provides the first results in order to address it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源