论文标题

从点云学习数字地形模型:基于ALS2DTM数据集和基于栅格的GAN

Learning Digital Terrain Models from Point Clouds: ALS2DTM Dataset and Rasterization-based GAN

论文作者

Lê, Hoàng-Ân, Guiotte, Florent, Pham, Minh-Tan, Lefèvre, Sébastien, Corpetti, Thomas

论文摘要

尽管深处神经网络在各个领域中流行,但从机载激光扫描(ALS)点云中提取数字地形模型(DTM)仍然具有挑战性。这可能是由于缺乏专用的大规模注释数据集以及点云和DTMS之间的数据结构差异。为了促进数据驱动的DTM提取,本文从开源的ALS点云和相应的DTM中收集了带有各种城市,森林和山区场景的相应DTM。提出了一种基线方法,是第一次尝试通过栅格化技术(即革命深)从ALS点云中直接从ALS点云中提取数字地形模型的尝试。使用良好的方法进行了广泛的研究,以对数据集进行基准测试,并分析学习从点云中提取DTM的挑战。实验结果显示了不可知论数据驱动的方法的兴趣,与为DTM提取设计的方法相比,次级误差水平相比。数据和源代码可在https://lhoangan.github.io/deepterra/上提供可重复性和进一步的类似研究。

Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven DTM extraction, this paper collects from open sources a large-scale dataset of ALS point clouds and corresponding DTMs with various urban, forested, and mountainous scenes. A baseline method is proposed as the first attempt to train a Deep neural network to extract digital Terrain models directly from ALS point clouds via Rasterization techniques, coined DeepTerRa. Extensive studies with well-established methods are performed to benchmark the dataset and analyze the challenges in learning to extract DTM from point clouds. The experimental results show the interest of the agnostic data-driven approach, with sub-metric error level compared to methods designed for DTM extraction. The data and source code is provided at https://lhoangan.github.io/deepterra/ for reproducibility and further similar research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源