论文标题
与时空相互作用的Belousov-Zhabotinsky系统中出现推动波前的两个原因
Two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky system with spatiotemporal interaction
论文作者
论文摘要
我们证明了传播的最小速度$ c _*(r,b,k)\在[2 \ sqrt {1-r},2] $中,对于belousov-zhabotinsky系统的Wavefronts $ s $ belousov-zhabotinsky系统,具有时空交互作用,由时空互动定义为与(可能(可能)(可能,“可能,” FAT-Tail-tail-tail-tailed”)Kernel $ k $ kernel $ k $ kernel $ k $ kernel $ k $ kernel $ kernel $ kernel $ kernel $。假定该模型是单稳定的非分类的,即(0,1)$。最慢的波前被称为按下或非线性确定其速度$ c _*(r,b,k)> 2 \ sqrt {1-r} $。我们表明$ c _*(r,b,k)$接近2,如果i)正面的参数$ b $足够大或ii)如果$ k $在空间上是空间不对称的(例如,在左侧:在这种情况下:在这种情况下,动力学对动力学的右侧侧侧浓度的影响比左侧更重要)。因此,这揭示了在Belousov-Zhabotinsky反应中出现推动波前的两个原因。
We prove the existence of the minimal speed of propagation $c_*(r,b,K) \in [2\sqrt{1-r},2]$ for wavefronts in the Belousov-Zhabotinsky system with a spatiotemporal interaction defined by the convolution with (possibly, "fat-tailed") kernel $K$. The model is assumed to be monostable non-degenerate, i.e. $r\in (0,1)$. The slowest wavefront is termed pushed or non-linearly determined if its velocity $c_*(r,b,K) > 2\sqrt{1-r}$. We show that $c_*(r,b,K)$ is close to 2 if i) positive system's parameter $b$ is sufficiently large or ii) if $K$ is spatially asymmetric to one side (e.g. to the left: in such a case, the influence of the right side concentration of the bromide ion on the dynamics is more significant than the influence of the left side). Consequently, this reveals two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky reaction.