论文标题
在奇特的长期轨道演变上,毫秒毫秒的X射线脉冲杆Swift J1749.4-2807
On the peculiar long-term orbital evolution of the eclipsing accreting millisecond X-ray pulsar SWIFT J1749.4-2807
论文作者
论文摘要
我们介绍了在将近11年的静止期间,在其最新爆发中,在其最新的爆发期间,介绍了毫秒X射线脉冲脉冲Swift J1749.4-2807的PULSAR时序分析。根据对脉冲曲线的连贯定时分析,我们更新了系统的轨道晶状体。在爆发过程中可见信号的基本频率阶段的大相位跳跃,与上一次爆发期间观察到的相一致。此外,我们报告了非零偏心率($ e \ simeq 4 \ times 10^{ - 5} $)的略有重要证据,从2021年和2010年爆发的分析中独立地获得,我们讨论了可能的兼容场景。 Swift J1749.4-2807的长期轨道演变表明,NS投影的半轴轴$(x)$和轨道周期$(p _ {\ rm orb})$都可以快速扩展,以$ \ dot {x}} \ simeq 2.6 \ simeq \ simeq 2.6 \ simeq 2.6 \ simeq \ simeq tiles { 10^{ - 13} \,\ text {lt-s} \,\ text {s}^{ - 1} $和$ \ dot {p} _ {\ rm orb} \ rm orb} \ simeq 4 \ simeq 4 \ times 10^{ - 10} { - 10}}} \,\,\,\,\,\,\,\,\ s} {s}。 Swift J1749.4-2807是唯一启用毫秒的X射线脉冲星,到目前为止,轨道周期衍生物已从观察到的轨道时期的明显变化中直接测量。最后,未检测到紧凑型物体的自旋频率的显着世俗减速,这使我们能够在$ b_ {pc} <1.3 \ times 10^{8}〜\ text {g} $的极性上设置磁场强度的约束,并与AMXPS报告的典型值一致。
We present the pulsar timing analysis of the accreting millisecond X-ray pulsar SWIFT J1749.4-2807 monitored by NICER and XMM-Newton during its latest outburst after almost eleven years of quiescence. From the coherent timing analysis of the pulse profiles, we updated the orbital ephemerides of the system. Large phase jumps of the fundamental frequency phase of the signal are visible during the outburst, consistent with what was observed during the previous outburst. Moreover, we report on the marginally significant evidence for non-zero eccentricity ($e\simeq 4\times 10^{-5}$) obtained independently from the analysis of both the 2021 and 2010 outbursts and we discuss possible compatible scenarios. Long-term orbital evolution of SWIFT J1749.4-2807 suggests a fast expansion of both the NS projected semi-major axis $(x)$, and the orbital period $(P_{\rm orb})$, at a rate of $\dot{x}\simeq 2.6\times 10^{-13}\,\text{lt-s}\,\text{s}^{-1}$ and $\dot{P}_{\rm orb}\simeq 4 \times 10^{-10}\,\text{s}\,\text{s}^{-1}$, respectively. SWIFT J1749.4-2807 is the only accreting millisecond X-ray pulsar, so far, from which the orbital period derivative has been directly measured from appreciable changes on the observed orbital period. Finally, no significant secular deceleration of the spin frequency of the compact object is detected, which allowed us to set a constraint on the magnetic field strength at the polar caps of $B_{PC}<1.3\times 10^{8}~\text{G}$, in line with typical values reported for AMXPs.