论文标题
使用椭圆极化光线的工程浮光拓扑阶段
Engineering Floquet topological phases using elliptically polarized light
论文作者
论文摘要
我们研究了通过应用椭圆极化的光驱动的二维拓扑系统。特别是,我们分析了Bernevig-Hughes-Zhang模型,使用使用e元的频率$ω$的椭圆极化光线扰动,通常由矢量电位$ {\ bf a}(t)=(a_ {0x}} \ cos(Ω (可以通过适当地选择$ a_ {0x} $,$ a_ {0y} $和$ ϕ_0 $来获得线性和循环极化作为此通用形式的特殊情况。即使以$ ϕ_0 $的固定值,我们也可以通过更改驱动器的$ x $和$ y $组件的比率来更改系统的拓扑特征。因此,我们找到一个丰富的拓扑相图作为$ a_ {0x} $,$ a_ {0y} $和$ ϕ_0 $的函数。在这些阶段的每个阶段中,Chern数量给出的拓扑不变与存在纳米替比边缘的自旋偏振状态的数量一致。
We study a two-dimensional topological system driven out of equilibrium by the application of elliptically polarized light. In particular, we analyze the Bernevig-Hughes-Zhang model when it is perturbed using an elliptically polarized light of frequency $Ω$ described in general by a vector potential ${\bf A}(t) = (A_{0x} \cos(Ωt), A_{0y} \cos(Ωt + ϕ_0))$. (Linear and circular polarizations can be obtained as special cases of this general form by appropriately choosing $A_{0x}$, $A_{0y}$, and $ϕ_0$). Even for a fixed value of $ϕ_0$, we can change the topological character of the system by changing the ratio of the $x$ and $y$ components of the drive. We therefore find a rich topological phase diagram as a function of $A_{0x}$, $A_{0y}$ and $ϕ_0$. In each of these phases, the topological invariant given by the Chern number is consistent with the number of spin-polarized states present at the edges of a nanoribbon.