论文标题

HM-LDM:混合会员潜在距离模型

HM-LDM: A Hybrid-Membership Latent Distance Model

论文作者

Nakis, Nikolaos, Çelikkanat, Abdulkadir, Mørup, Morten

论文摘要

建模复杂网络的一个核心目的是准确嵌入网络,以检测结构并预测链接和节点属性。潜在空间模型(LSM)已成为嵌入网络的突出框架,并将潜在距离(LDM)和Eigenmodel(LEM)作为最广泛使用的LSM规格。对于潜在的社区检测,LDMS中的嵌入空间已赋予聚类模型,而LEM已限制在基于部分的非负矩阵分解(NMF)灵感的表示社区发现的表示。目前,我们通过将LDM表示形式限制为构成混合成员潜在距离模型(HM-LDM)的D-simplex,将LSM与潜在的社区检测调和。我们表明,对于足够大的单纯形量,这可以实现,而不会损失表达能力,而通过将模型扩展到平方的欧几里得距离,我们恢复了LEM公式,并具有限制的促进基于零件的表示,类似于NMF。重要的是,通过系统地减少单纯形的体积,该模型变得独特,并最终导致节点对单纯形角的艰苦分配。我们通过实验证明了拟议的HM-LDM如何在制度中允许准确的节点表示,以确保可识别性和有效的社区提取。重要的是,HM-LDM自然会与网络嵌入式柔软而艰难的社区检测进行调解,该网络嵌入在数量约束的单纯胶上探索一个简单的连续优化程序,该程序接受了对硬性成员和混合成员社区检测之间的折衷研究。

A central aim of modeling complex networks is to accurately embed networks in order to detect structures and predict link and node properties. The latent space models (LSM) have become prominent frameworks for embedding networks and include the latent distance (LDM) and eigenmodel (LEM) as the most widely used LSM specifications. For latent community detection, the embedding space in LDMs has been endowed with a clustering model whereas LEMs have been constrained to part-based non-negative matrix factorization (NMF) inspired representations promoting community discovery. We presently reconcile LSMs with latent community detection by constraining the LDM representation to the D-simplex forming the hybrid-membership latent distance model (HM-LDM). We show that for sufficiently large simplex volumes this can be achieved without loss of expressive power whereas by extending the model to squared Euclidean distances, we recover the LEM formulation with constraints promoting part-based representations akin to NMF. Importantly, by systematically reducing the volume of the simplex, the model becomes unique and ultimately leads to hard assignments of nodes to simplex corners. We demonstrate experimentally how the proposed HM-LDM admits accurate node representations in regimes ensuring identifiability and valid community extraction. Importantly, HM-LDM naturally reconciles soft and hard community detection with network embeddings exploring a simple continuous optimization procedure on a volume constrained simplex that admits the systematic investigation of trade-offs between hard and mixed membership community detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源