论文标题
机器人使用Acted 3D传感器进行自我校准
Robot Self-Calibration Using Actuated 3D Sensors
论文作者
论文摘要
几十年来,机器人和手眼校准都一直是研究的目的。尽管当前方法能够精确,可靠地识别机器人运动学模型的参数,但它们仍然依靠外部设备,例如校准对象,标记和/或外部传感器。本文没有试图将记录的测量值适合已知对象的模型,而是将机器人校准视为一个离线大满贯问题,其中扫描姿势通过移动的运动学链将扫描姿势链接到空间中的固定点。因此,提出的框架允许使用任意眼睛深度传感器的机器人校准,从而无需任何外部工具就可以完全自主的自主校准。我的新方法是利用迭代最接近点算法的修改版本来对多个3D记录进行捆绑调整,以估计运动模型的最佳参数。对系统的详细评估显示在带有各种附着的3D传感器的真实机器人上。提出的结果表明,该系统以其成本的一小部分达到了与专用外部跟踪系统相当的精度。
Both, robot and hand-eye calibration haven been object to research for decades. While current approaches manage to precisely and robustly identify the parameters of a robot's kinematic model, they still rely on external devices, such as calibration objects, markers and/or external sensors. Instead of trying to fit the recorded measurements to a model of a known object, this paper treats robot calibration as an offline SLAM problem, where scanning poses are linked to a fixed point in space by a moving kinematic chain. As such, the presented framework allows robot calibration using nothing but an arbitrary eye-in-hand depth sensor, thus enabling fully autonomous self-calibration without any external tools. My new approach is utilizes a modified version of the Iterative Closest Point algorithm to run bundle adjustment on multiple 3D recordings estimating the optimal parameters of the kinematic model. A detailed evaluation of the system is shown on a real robot with various attached 3D sensors. The presented results show that the system reaches precision comparable to a dedicated external tracking system at a fraction of its cost.