论文标题

田间的随机键键抗铁磁ising模型

Random-bond antiferromagnetic Ising model in a field

论文作者

d'Auriac, Jean-Christian Anglès, Iglói, Ferenc

论文摘要

使用组合优化技术,我们研究具有均匀分布的随机反铁磁耦合$(1 \ le j_i \ le 2)$的二维和三维ISING模型,在同一般纵向场,$ h $,在零温度下。在线性尺寸的有限系统中,当站点在同一子级别上,或者它们属于不同的子层次时,我们测量平均相关函数,$ c_l(\ ell,h)$。纯系统中的一阶转换,在二维中转向混合顺序,关键指数$ 1/ν\约0.5 $和$η\约0.7 $。在三个维度中,我们获得了$ 1/ν\大约0.7 $,这与随机场ISING模型的值兼容,但是我们不能区分二阶和混合阶过渡。

Using combinatorial optimisation techniques we study the critical properties of the two- and the three-dimensional Ising model with uniformly distributed random antiferromagnetic couplings $(1 \le J_i \le 2)$ in the presence of a homogeneous longitudinal field, $h$, at zero temperature. In finite systems of linear size, $L$, we measure the average correlation function, $C_L(\ell,h)$, when the sites are either on the same sub-lattice, or they belong to different sub-lattices. The phase transition, which is of first-order in the pure system, turns to mixed order in two dimensions with critical exponents $1/ν\approx 0.5$ and $η\approx 0.7$. In three dimensions we obtain $1/ν\approx 0.7$, which is compatible with the value of the random-field Ising model, but we cannot discriminate between second-order and mixed-order transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源