论文标题

快速蓝色光学瞬变的磁铁发动机及其与SLSNE,SNE IC-BL和LGRB的连接

Magnetar Engines in Fast Blue Optical Transients and Their Connections with SLSNe, SNe Ic-BL, and lGRBs

论文作者

Liu, Jian-Feng, Zhu, Jin-Ping, Liu, Liang-Duan, Yu, Yun-Wei, Zhang, Bing

论文摘要

我们与磁铁发动机型号一起拟合40个快速蓝色光学瞬变(FBOT)的多波段灯效率。 FBOT弹射器的质量,FBOT磁铁的初始自旋周期和极性磁场分别约束至$ m _ {\ rm {ej}} = 0.18^{+0.52} _ { - 0.13} _ { - 0.13} \ $ p _ {\ rm {i}} = 9.4^{+8.1} _ { - 3.9} \,{\ rm {ms {ms}} $,和$ b _ {\ rm p} = 7^{+16} = 7^{+16} {+16} _ { - 5} _ { - 5} \ times101010^{14} $} $ b _ {\ rm p} $的价值的广泛分布散布了磁铁的参数范围,从超浮标的超级新星(SLSNE)到宽线型IC超级novae(sne ic-ic-;有些人都观察到与长寿命gamma-ray爆发有关),这也暗示着由巨麦驱动的。将FBOT与其他瞬变相结合,我们发现强烈的通用抗相关性为$ p _ {\ rm {i}}} \ propto {m _ {\ rm {\ rm {ej}}}^{ - 0.45}}} $,表明它们可以共享共同的来源。具体来说,怀疑所有这些瞬变源于近距离二元系统中极端分裂的恒星的崩溃,但祖细胞质量不同。结果,fbots由$ {\ sim} 1 \,m_ \ odot $的小弹出质量截然不同,在Lightcurves $ \ sim12 \,{\ rm d} $的兴起时,它导致观察性分离。此外,在$ m _ {\ rm peak} -t _ {\ rm上升} $平面中,可以通过经验线将fbots与slsne一起与SNE IC-BL分开瞬变的峰值绝对大小和$ t _ {\ rm上升} $是上升时间。

We fit the multi-band lightcurves of 40 fast blue optical transients (FBOTs) with the magnetar engine model. The mass of the FBOT ejecta, the initial spin period and polar magnetic field of the FBOT magnetars are respectively constrained to $M_{\rm{ej}}=0.18^{+0.52}_{-0.13}\,M_\odot$, $P_{\rm{i}}=9.4^{+8.1}_{-3.9}\,{\rm{ms}}$, and $B_{\rm p}=7^{+16}_{-5}\times10^{14}\,{\rm{G}}$. The wide distribution of the value of $B_{\rm p}$ spreads the parameter ranges of the magnetars from superluminous supernovae (SLSNe) to broad-line Type Ic supernovae (SNe Ic-BL; some are observed to be associated with long-duration gamma-ray bursts), which are also suggested to be driven by magnetars. Combining FBOTs with the other transients, we find a strong universal anti-correlation as $P_{\rm{i}}\propto{M_{\rm{ej}}^{-0.45}}$, indicating them could share a common origin. To be specific, it is suspected that all of these transients originate from collapse of extreme-stripped stars in close binary systems, but with different progenitor masses. As a result, FBOTs distinct themselves by their small ejecta masses with an upper limit of ${\sim}1\,M_\odot$, which leads to an observational separation in the rise time of the lightcurves $\sim12\,{\rm d}$. In addition, the FBOTs together with SLSNe can be separated from SNe Ic-BL by an empirical line in the $M_{\rm peak}-t_{\rm rise}$ plane corresponding to an energy requirement of a mass of $^{56}$Ni of $\sim0.3M_{\rm ej}$, where $M_{\rm peak}$ is the peak absolute magnitude of the transients and $t_{\rm rise}$ is the rise time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源