论文标题

SIRS流行模型中的最佳疫苗接种

Optimal Vaccination in a SIRS Epidemic Model

论文作者

Federico, Salvatore, Ferrari, Giorgio, Torrente, Maria-Laura

论文摘要

我们提出并解决了SIRS类型确定性隔室模型中的最佳疫苗接种问题:免疫种群可以再次易感,例如,由于疫苗的免疫能力不完全。因此,社会计划者旨在通过疫苗接种运动减少易感人群的数量,同时最大程度地减少与传染病有关的社会和经济成本。作为理论上的贡献,我们提供了技术非平滑验证定理,确保对汉密尔顿 - 雅各布利 - 贝尔曼方程的半循环粘度解决方案可以通过最小的成本函数识别,但前提是闭环方程可容纳解决方案。然后,通过从\ emph {常规拉格朗日流}的理论借用结果来得出闭环方程的条件。从应用的角度来看,我们在案例研究中提供了模型的数值实现,并具有二次瞬时成本。在其他结论中,我们观察到,从长期来看,最佳疫苗接种政策能够将感染百分比保持在零,至少在自然繁殖数量和再感染率很小时。

We propose and solve an optimal vaccination problem within a deterministic compartmental model of SIRS type: the immunized population can become susceptible again, e.g.\ because of a not complete immunization power of the vaccine. A social planner thus aims at reducing the number of susceptible individuals via a vaccination campaign, while minimizing the social and economic costs related to the infectious disease. As a theoretical contribution, we provide a technical non-smooth verification theorem, guaranteeing that a semiconcave viscosity solution to the Hamilton-Jacobi-Bellman equation identifies with the minimal cost function, provided that the closed-loop equation admits a solution. Conditions under which the closed-loop equation is well-posed are then derived by borrowing results from the theory of \emph{Regular Lagrangian Flows}. From the applied point of view, we provide a numerical implementation of the model in a case study with quadratic instantaneous costs. Amongst other conclusions, we observe that in the long-run the optimal vaccination policy is able to keep the percentage of infected to zero, at least when the natural reproduction number and the reinfection rate are small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源