论文标题
FAIRVFL:一个公平的垂直联合学习框架,具有对抗性学习
FairVFL: A Fair Vertical Federated Learning Framework with Contrastive Adversarial Learning
论文作者
论文摘要
垂直联合学习(VFL)是一种隐私的机器学习范式,可以从以隐私性的方式从在不同平台上分发的功能中学习模型。由于在实际应用程序中,数据可能包含对公平敏感特征(例如性别)的偏见,因此VFL模型可能会从培训数据中继承偏见,并且对于某些用户组而言是不公平的。但是,现有的公平机器学习方法通常依赖于对公平敏感的特征的集中存储来实现模型公平,通常在联合场景中不适用。在本文中,我们提出了一个公平的垂直联合学习框架(FAIRVFL),可以改善VFL模型的公平性。 FAIRVFL的核心思想是根据分散的特征字段以隐私性的方式学习样本的统一和公平表示。具体而言,每个具有不敏感功能的平台首先从本地功能中学习本地数据表示。然后,将这些本地表示形式上传到服务器并汇总为目标任务的统一表示形式。为了学习公平的统一表示形式,我们将其发送到每个平台存储公平性敏感特征并应用对抗性学习以消除从偏见数据继承的统一表示形式中消除偏见。此外,为了保护用户隐私,我们进一步提出了一种对比的对抗学习方法,以在将其发送到保持公平敏感性功能的平台之前从服务器中的统一表示中删除私人信息。在三个现实世界数据集上进行的实验验证了我们的方法可以通过用户隐私良好的保护有效地改善模型公平性。
Vertical federated learning (VFL) is a privacy-preserving machine learning paradigm that can learn models from features distributed on different platforms in a privacy-preserving way. Since in real-world applications the data may contain bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias from training data and become unfair for some user groups. However, existing fair machine learning methods usually rely on the centralized storage of fairness-sensitive features to achieve model fairness, which are usually inapplicable in federated scenarios. In this paper, we propose a fair vertical federated learning framework (FairVFL), which can improve the fairness of VFL models. The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way. Specifically, each platform with fairness-insensitive features first learns local data representations from local features. Then, these local representations are uploaded to a server and aggregated into a unified representation for the target task. In order to learn a fair unified representation, we send it to each platform storing fairness-sensitive features and apply adversarial learning to remove bias from the unified representation inherited from the biased data. Moreover, for protecting user privacy, we further propose a contrastive adversarial learning method to remove private information from the unified representation in server before sending it to the platforms keeping fairness-sensitive features. Experiments on three real-world datasets validate that our method can effectively improve model fairness with user privacy well-protected.