论文标题
旅行:使用3D激光扫描的图表表示,可穿越的地面和地上对象进行分割
TRAVEL: Traversable Ground and Above-Ground Object Segmentation Using Graph Representation of 3D LiDAR Scans
论文作者
论文摘要
从3D点云中对可遍历区域和感兴趣的对象的感知是自主导航的关键任务之一。地面车辆需要寻找可通过车轮探索的可遍历的地形。然后,为了做出安全的导航决定,必须跟踪位于这些地形上的物体的分割。但是,过度分割和分割不足可能会对此类导航决策产生负面影响。为此,我们提出了旅行,该旅行使用3D点云的图表表示可遍历的地面检测和对象聚类。为了将遍布的地面进行分割,将点云编码为图形结构,即三个格里德字段,该场将每个三个格里德视为节点。然后,通过检查连接节点的边缘的局部凸度和凹度来搜索和重新定义可遍历的区域。另一方面,我们的地下对象分割通过表示球形预测空间中的一组水平相邻的3D点作为节点,而节点之间的垂直/水平关系是边缘。充分利用节点边缘结构,上面的分割可确保实时操作并减轻过度分割。通过使用模拟,城市场景和我们自己的数据集的实验,我们证明了我们提出的可遍历的地面分割算法优于其他最先进的方法,而我们新提出的新提出的评估指标对于评估上面的分裂是有意义的。我们将在https://github.com/url-kaist/travel上向公众提供代码和自己的数据集。
Perception of traversable regions and objects of interest from a 3D point cloud is one of the critical tasks in autonomous navigation. A ground vehicle needs to look for traversable terrains that are explorable by wheels. Then, to make safe navigation decisions, the segmentation of objects positioned on those terrains has to be followed up. However, over-segmentation and under-segmentation can negatively influence such navigation decisions. To that end, we propose TRAVEL, which performs traversable ground detection and object clustering simultaneously using the graph representation of a 3D point cloud. To segment the traversable ground, a point cloud is encoded into a graph structure, tri-grid field, which treats each tri-grid as a node. Then, the traversable regions are searched and redefined by examining local convexity and concavity of edges that connect nodes. On the other hand, our above-ground object segmentation employs a graph structure by representing a group of horizontally neighboring 3D points in a spherical-projection space as a node and vertical/horizontal relationship between nodes as an edge. Fully leveraging the node-edge structure, the above-ground segmentation ensures real-time operation and mitigates over-segmentation. Through experiments using simulations, urban scenes, and our own datasets, we have demonstrated that our proposed traversable ground segmentation algorithm outperforms other state-of-the-art methods in terms of the conventional metrics and that our newly proposed evaluation metrics are meaningful for assessing the above-ground segmentation. We will make the code and our own dataset available to public at https://github.com/url-kaist/TRAVEL.