论文标题

生成学习中量子神经网络的最新进展

Recent Advances for Quantum Neural Networks in Generative Learning

论文作者

Tian, Jinkai, Sun, Xiaoyu, Du, Yuxuan, Zhao, Shanshan, Liu, Qing, Zhang, Kaining, Yi, Wei, Huang, Wanrong, Wang, Chaoyue, Wu, Xingyao, Hsieh, Min-Hsiu, Liu, Tongliang, Yang, Wenjing, Tao, Dacheng

论文摘要

量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,可以合理地假设量子生成学习模型(QGLM)可能会超过其经典的对应物。因此,QGLM正在从量子物理和计算机科学界受到越来越多的关注,在这些QGLM上可以在近期量子机上有效实施具有潜在计算优势的各种QGLM。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。

Quantum computers are next-generation devices that hold promise to perform calculations beyond the reach of classical computers. A leading method towards achieving this goal is through quantum machine learning, especially quantum generative learning. Due to the intrinsic probabilistic nature of quantum mechanics, it is reasonable to postulate that quantum generative learning models (QGLMs) may surpass their classical counterparts. As such, QGLMs are receiving growing attention from the quantum physics and computer science communities, where various QGLMs that can be efficiently implemented on near-term quantum machines with potential computational advantages are proposed. In this paper, we review the current progress of QGLMs from the perspective of machine learning. Particularly, we interpret these QGLMs, covering quantum circuit born machines, quantum generative adversarial networks, quantum Boltzmann machines, and quantum autoencoders, as the quantum extension of classical generative learning models. In this context, we explore their intrinsic relation and their fundamental differences. We further summarize the potential applications of QGLMs in both conventional machine learning tasks and quantum physics. Last, we discuss the challenges and further research directions for QGLMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源