论文标题
无标签图像分类的掩盖无监督的自我训练
Masked Unsupervised Self-training for Label-free Image Classification
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
State-of-the-art computer vision models are mostly trained with supervised learning using human-labeled images, which limits their scalability due to the expensive annotation cost. While self-supervised representation learning has achieved impressive progress, it still requires a second stage of finetuning on labeled data. On the other hand, models pre-trained with large-scale text-image supervision (e.g., CLIP) have enabled zero-shot transfer to downstream image classification tasks. However, the zero-shot performance of CLIP-like models are often insufficient for real-world adoption. In this paper, we aim to leverage the abundant unlabeled data from a target domain to improve the performance of a pre-trained zero-shot classifier, by unsupervised finetuning of the pre-trained model. We propose Masked Unsupervised Self-Training (MUST), a new unsupervised adaptation method which leverages two different and complementary sources of training signals: pseudo-labels and raw images. MUST jointly optimizes three objectives to learn both class-level global feature and pixel-level local feature and enforces a regularization between the two. We demonstrate the efficacy of MUST on a variety of downstream tasks, where it improves upon CLIP by a large margin. MUST also outperforms supervised few-shot adaptation methods. It achieves a top-1 accuracy of 77.7% on ImageNet using ViT-B, +9.4% higher than CLIP, and +6.2% higher than 16-shot CLIP adaptation. Our code is available at https://github.com/salesforce/MUST.