论文标题

无相毫米波梁跟踪的机器学习预测

Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking

论文作者

Domae, Benjamin W., Boljanovic, Veljko, Li, Ruifu, Cabric, Danijela

论文摘要

未来的无线网络可能在毫米波(MMW)和子terahertz(Sub-Thz)频率下运行,以实现高数据速率要求。尽管大型天线阵列对于MMW和Sub-Thz频段的可靠通信至关重要,但这些天线阵列还将授权有效且可扩展的初始光束对齐和移动设备的链接维护算法。由于高频振荡器相噪声引起的低功率分阶段阵列架构和无相位功率测量对实用梁跟踪算法带来了其他挑战。传统的梁跟踪协议需要详尽的所有可能的光束方向,并且较高的机动性和较大的阵列缩放不佳。已经提出了压缩感测和机器学习设计,以改善阵列尺寸的测量缩放,但通常在硬件障碍下降级或需要原始样品。在这项工作中,我们介绍了一种新型的长期短期内存(LSTM)网络辅助光束跟踪和预测算法,仅利用固定压缩代码簿中的无相位测量。我们证明了可比的光束对准精度与最先进的无相梁对准算法,同时减少了随时间的时间的平均测量值。

Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phase-less power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源