论文标题

讨论基于悬架的桥模型的非线性动态行为

Discussion on Nonlinear Dynamic Behavior of Suspension Based Bridge Model

论文作者

Varanis, Marcus, de Abreu, Felipe Lima, Beck, Pedro Augusto, de Oliveira, Clivaldo, Ribeiro, Mauricio Aparecido, Balthazar, José Manoel

论文摘要

在本文中,我们探讨了数值研究。悬架桥模型的非线性行为。悬挂桥的研究是机械振动的经典问题之一,其中最著名的崩溃之一是塔科马窄桥的崩溃。本文介绍了悬挂桥上振动的初始解释。为此,将要模拟三个不同的系统:第一个系统是仅考虑桥甲板的垂直振动的系统,第二个系统涵盖了主电缆和路基的振动,最后,该系统同时考虑了垂直和扭转振动。还将对具有时间响应,快速傅立叶变换(FFT)和连续小波变换(CWT)的所有系统进行时频分析,加上在特定情况下使用Hilbert-Huang Transform(HHT)。 Poincare地图和Lyapunov指数用于表征系统的动力学。特别是,在垂直和扭转系统中,解释了塔科马桥振荡为什么从垂直振荡到扭转振荡的突然变化。因此,通过在时间和频域中的数值模拟来研究极丰富的动态行为。

In this paper we explore the numerical study. of the Nonlinear Behavior of Suspension Bridge Models. The study of suspension bridges is one of the classic problems of mechanical vibrations, one of the most famous collapses of which was that of the Tacoma Narrows Bridge. This paper covers an initial explanation of vibrations in a suspension bridge. To do this, three different systems are going to be simulated: The first being a system where only the vertical vibrations of the bridge deck are taken into account, the second covering the vibrations of the main cable and the roadbed, and lastly, a system that takes both vertical and torsional vibrations into account. A time-frequency analysis will also be done on all systems with temporal response, Fast Fourier Transform (FFT) and Continuous Wavelet Transform (CWT), plus in a specific case the use of Hilbert-Huang transform (HHT). Poincare maps and Lyapunov exponents are used to characterize the dynamics of the system. In particular, in the vertical and torsional system, an explanation of why the Tacoma Bridge oscillations have undergone an abrupt change from vertical to torsional oscillations. Thus, extremely rich dynamic behaviors are studied by numerical simulation in the time and frequency domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源