论文标题
在外部光蒸发的影响下,大行星的生长和迁移
The growth and migration of massive planets under the influence of external photoevaporation
论文作者
论文摘要
气体巨型行星的形成必须在恒星寿命的前几毫升期间发生,当时原球盘仍然含有足够的气体以吸收到行星芯上。大多数原星盘都暴露于附近巨大恒星的强紫外线辐射,这驱动风和耗尽了行星形成的质量预算。尚不清楚外部光蒸发在多大程度上影响巨大行星的形成。在这项工作中,我们为在外部FUV场的影响下提出了一个简单的一维模型,用于巨大行星的生长和迁移。我们发现,即使是中等的fuv fluxes $ f_ \ mathrm {fuv} \ gtrsim 100 \,g_0 $对行星质量和迁移都有很大的影响。通过降低局部表面密度并将积聚关闭到行星上,外部照射会抑制行星质量,并早日停止迁移。因此,典型的恒星出生环境的分布可以在半高轴和行星质量之间产生抗相关性,这可以解释轨道周期时行星发生率的明显下降,$ p_ \ mathrm {orb {orb {orb} \ gtrsim 10^3 $。即使是中等通量$ f_ \ mathrm {fuv} $,如果任何初始的半马约尔轴都会强烈抑制巨大的行星形成和内向迁移,如果恒星宿主质量$ m _*\ lyssim 0.5 \,m_ \ odot $,与大型行星的发现是一致的,那么大量的星球就会出现这样的大量较低的星星。我们的外部椎间盘耗竭处方的结果显示,在最新的人口合成模型中采用的当前近似值有显着差异,激发了对这一重要过程的未来仔细处理。
The formation of gas giant planets must occur during the first few Myr of a star's lifetime, when the protoplanetary disc still contains sufficient gas to be accreted onto the planetary core. The majority of protoplanetary discs are exposed to strong ultraviolet irradiation from nearby massive stars, which drives winds and depletes the mass budget for planet formation. It remains unclear to what degree external photoevaporation affects the formation of massive planets. In this work, we present a simple one dimensional model for the growth and migration of a massive planet under the influence of external FUV fields. We find that even moderate FUV fluxes $F_\mathrm{FUV}\gtrsim 100 \, G_0$ have a strong influence on planet mass and migration. By decreasing the local surface density and shutting off accretion onto the planet, external irradiation suppresses planet masses and halts migration early. The distribution of typical stellar birth environments can therefore produce an anti-correlation between semi-major axis and planet mass, which may explain the apparent decrease in planet occurrence rates at orbital periods $P_\mathrm{orb}\gtrsim 10^3$ days. Even moderate fluxes $F_\mathrm{FUV}$ strongly suppress giant planet formation and inward migration for any initial semi-major axis if the stellar host mass $M_*\lesssim 0.5\, M_\odot$, consistent with findings that massive planet occurrence is much lower around such stars. The outcomes of our prescription for external disc depletion show significant differences to the current approximation adopted in state-of-the-art population synthesis models, motivating future careful treatment of this important process.