论文标题

具有Lorentzian签名的多项式,并通过双曲线编程计算永久性

Polynomials with Lorentzian Signature, and Computing Permanents via Hyperbolic Programming

论文作者

Dey, Papri

论文摘要

我们研究了在封闭凸锥的任何点进行评估的Hessians的多项式类别的类别。该类是对洛伦兹多项式的显着类别的概括。我们证明双曲线多项式和圆锥稳定的多项式属于该类别,并且具有Lorentzian Signature的多项式集合被关闭。最后,我们开发了一种计算属于一个类别的非词性矩阵的永久物质的方法,该类别包括非$ k $ loclocalloclicallocal单矩阵通过双曲线编程。

We study the class of polynomials whose Hessians evaluated at any point of a closed convex cone have Lorentzian signature. This class is a generalization to the remarkable class of Lorentzian polynomials. We prove that hyperbolic polynomials and conic stable polynomials belong to this class, and the set of polynomials with Lorentzian signature is closed. Finally, we develop a method for computing permanents of nonsingular matrices which belong to a class that includes nonsingular $k$-locally singular matrices via hyperbolic programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源