论文标题
在圆锥光滑的分层空间上的Verdier二元性
Verdier duality on conically smooth stratified spaces
论文作者
论文摘要
在本文中,我们证明了在圆锥光滑的分层空间上可构造的滑轮的双重性。在这里,我们考虑具有稳定且双填充的$ \ infty $ - 类别的束带,配备了封闭的对称单体结构,在此设置中,可构造的构造意味着沿着地层和可划分的茎。我们需要采用圆锥光滑结构的几何形状的关键点是,表明Lurie版本的Verdier二元性限制了可构造的滑轮和Cosheaves之间的等价:这需要计算出口路径$ \ infty $ \ infty $ \ infty $ - infty $ - 紧凑的分层空间的类别,我们可以通过分辨率的分辨率来获得singularity的分辨率。
In this paper we prove a duality for constructible sheaves on conically smooth stratified spaces. Here we consider sheaves with values in a stable and bicomplete $\infty$-category equipped with a closed symmetric monoidal structure, and in this setting constructible means locally constant along strata and with dualizable stalks. The crucial point where we need to employ the geometry of conically smooth structures is in showing that Lurie's version of Verdier duality restricts to an equivalence between constructible sheaves and cosheaves: this requires a computation of the exit path $\infty$-category of a compact stratified space, that we obtain via resolution of singularities.