论文标题
在Aharonov-Bohm绿色功能上进一步:巧合极限
Further on the Aharonov-Bohm Green function: the coincidence limit
论文作者
论文摘要
对于具有单肌缺陷的标量CFT,根据appell $ f_1 $函数得出“减法绿色功能”。从而证明和扩展了Gimenez-Grau和Liendo的猜想关系,并证明可以适合广义自由领域。概述了确定散装块扩展的一种可能手段。有限的巧合极限表示为β函数的组合。
For a scalar CFT with a monodromy defect, a `subtracted Green function' is derived in terms of an Appell $F_1$ function. A conjectured relation of Gimenez-Grau and Liendo is thereby proved and extended and shown to hold for generalised free fields. A possible means of determining the bulk block expansion is outlined. Finite coincidence limits are expressed as combinations of Beta functions.