论文标题

迈向公平的联合建议学习:表征系统和数据异质性的相互依赖性

Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity

论文作者

Maeng, Kiwan, Lu, Haiyu, Melis, Luca, Nguyen, John, Rabbat, Mike, Wu, Carole-Jean

论文摘要

联合学习(FL)是通过运行机器学习模型培训在设备上进行推荐系统数据隐私的有效机制。尽管FL优化在FL面临的数据和系统异质性挑战方面解决了,但他们认为两者彼此独立。这种基本假设并不反映现实世界中的大规模推荐系统 - 数据和系统异质性紧密地交织在一起。本文采用了数据驱动的方法来显示现实数据中数据和系统异质性的相互依赖性,并量化了其对整体模型质量和公平性的影响。我们设计一个框架RF^2,以建模相互依存关系,并评估其对联合推荐任务的最先进模型优化技术的影响。我们证明,与大多数(如果不是全部)先前的工作中假定的简单设置相比,在现实的异质性场景下,对公平性的影响可能是严重的,高达15.8--41倍。这意味着,如果无法正确建模现实的系统诱导的数据异质性,那么优化的公平影响可以通过高达41倍来轻描淡写。结果表明,对实现系统诱导的数据异质性进行建模对于实现公平的联合建议学习至关重要。我们计划开放源RF^2,以实现FL创新的未来设计和评估。

Federated learning (FL) is an effective mechanism for data privacy in recommender systems by running machine learning model training on-device. While prior FL optimizations tackled the data and system heterogeneity challenges faced by FL, they assume the two are independent of each other. This fundamental assumption is not reflective of real-world, large-scale recommender systems -- data and system heterogeneity are tightly intertwined. This paper takes a data-driven approach to show the inter-dependence of data and system heterogeneity in real-world data and quantifies its impact on the overall model quality and fairness. We design a framework, RF^2, to model the inter-dependence and evaluate its impact on state-of-the-art model optimization techniques for federated recommendation tasks. We demonstrate that the impact on fairness can be severe under realistic heterogeneity scenarios, by up to 15.8--41x compared to a simple setup assumed in most (if not all) prior work. It means when realistic system-induced data heterogeneity is not properly modeled, the fairness impact of an optimization can be downplayed by up to 41x. The result shows that modeling realistic system-induced data heterogeneity is essential to achieving fair federated recommendation learning. We plan to open-source RF^2 to enable future design and evaluation of FL innovations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源