论文标题

用于开放系统和极值理论应用的淬火随机动态的扰动公式

Perturbation formulae for quenched random dynamics with applications to open systems and extreme value theory

论文作者

Atnip, Jason, Froyland, Gary, Gonzalez-Tokman, Cecilia, Vaienti, Sandro

论文摘要

我们考虑准混合线性算子cocycles $ \ MATHCAL {l}^{n}_Ω:= \ MATHCAL {l} _ {σ^{n-1}ω}ω} \ Circ \ Circ \ Circ \ circ \ cdcal \ circ \ circ \ chircal {l} $ vir}可逆的Ergodic过程$σ:ω\toΩ$及其小扰动$ \ MATHCAL {l} _ {ω,ε}^{n} $。我们证明了用于领先的Lyapunov乘数的抽象$ω$ - 一阶公式。 We then consider the situation where $\mathcal{L}_ω^{n}$ is a transfer operator cocycle for a random map cocycle $T_ω^{n}:=T_{σ^{n-1}ω}\circ\cdots\circ T_{σω}\circ T_ω$ and the perturbed transfer operators $ \ MATHCAL {L} _ {ω,ε} $由$ [0,1] $中的小型随机孔$ h_ {ω,ε} $定义,创建一个随机的开放动力学系统。 We obtain a first-order perturbation formula in this setting, which reads $λ_{ω,ε}=λ_ω-θ_ωμ_ω(H_{ω,ε})+o(μ_ω(H_{ω,ε})),$ where $μ_ω$ is the unique equivariant random measure (and equilibrium state) for the original closed random dynamics.然后,我们将部署我们的新机械,以创建一种光谱方法,以一种用一般的Ergodic可逆驾驶和随机观察来考虑随机动力学的频谱方法。使用一阶项$θ_Ω$得出极端价值定律。此外,在随机分段扩展间隔图的设置中,我们通过随机扰动方法建立了随机开放系统的随机均衡状态和有条件地不变的度量。最后,我们证明了由于签约电位而产生的随机平衡状态的统计极限定理。我们用各种明确的例子说明了理论。

We consider quasi-compact linear operator cocycles $\mathcal{L}^{n}_ω:=\mathcal{L}_{σ^{n-1}ω}\circ\cdots\circ\mathcal{L}_{σω}\circ \mathcal{L}_ω$ driven by an invertible ergodic process $σ:Ω\toΩ$, and their small perturbations $\mathcal{L}_{ω,ε}^{n}$. We prove an abstract $ω$-wise first-order formula for the leading Lyapunov multipliers. We then consider the situation where $\mathcal{L}_ω^{n}$ is a transfer operator cocycle for a random map cocycle $T_ω^{n}:=T_{σ^{n-1}ω}\circ\cdots\circ T_{σω}\circ T_ω$ and the perturbed transfer operators $\mathcal{L}_{ω,ε}$ are defined by the introduction of small random holes $H_{ω,ε}$ in $[0,1]$, creating a random open dynamical system. We obtain a first-order perturbation formula in this setting, which reads $λ_{ω,ε}=λ_ω-θ_ωμ_ω(H_{ω,ε})+o(μ_ω(H_{ω,ε})),$ where $μ_ω$ is the unique equivariant random measure (and equilibrium state) for the original closed random dynamics. Our new machinery is then deployed to create a spectral approach for a quenched extreme value theory that considers random dynamics with general ergodic invertible driving, and random observations. An extreme value law is derived using the first-order terms $θ_ω$. Further, in the setting of random piecewise expanding interval maps, we establish the existence of random equilibrium states and conditionally invariant measures for random open systems via a random perturbative approach. Finally we prove quenched statistical limit theorems for random equilibrium states arising from contracting potentials. We illustrate the theory with a variety of explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源